
EE 439 tunneling –

Electrons incident on an energy step: E < Uo
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Now consider the case of an electron incident on a step, but with E < Uo.  
Classically, we expect the electron to bounce back from the step.

We use the same approach as in the previous case: find solutions in the two 
regions and match them at the interface using the connection rules.

Spoiler alert: We will find the exact same result quantum mechanically.  However, 
in the process we will observe an interesting twist that will lead to something 
remarkable if we change the potential configuration slightly.
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We already know the solutions in region 1, where U = 0.  This is identical to the 
previous case:

ψ1(x) = A exp(ik1x) + B exp(−ik1x) k1 =

�
2mE

�2

Things are a bit more interesting in region 2.

Since Uo > E, we can re-write this equation

−
�2

2m

∂2ψ2(x)

∂x2
+ Uoψ2(x) = Eψ2(x)

∂2ψ2(x)

∂x2
−

2m

�2
(Uo − E)ψ2(x) = 0

α2 > 0
∂2ψ2(x)

∂x2
− α2

2ψ2(x) = 0
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The general solution to this form of the S.E. is 

ψ2(x) = C exp(α2x) + D exp(−α2x)

The two terms represent growing and decaying exponentials.  These are not 
traveling waves.  They do still have the oscillatory time-dependence that we’ve 
seen for time-independent potentials, but they are simply exponential terms with 
no traveling component.  These exponential functions are known as evanescent 
waves.

Now we need to match the solutions at the boundary, but first a physical 
argument:  the first term above, Cexp( α2x), represents a growing exponential.  As 
x increases, this term will “blow up”.  We know that this cannot be an allowable 
wave function.  So we will preclude the impossibility by removing the term from 
the solution (i.e. we’ll set C to 0).
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ψ�
1(0) = ψ�

2(0)

ik1A − ik1B = −α2D

ψ1(0) = ψ2(0)

A + B = D

As done previously, we can define a reflection amplitude

B

A
= −

α2 + ik1

α2 − ik1

The reflection coefficient is

R =
jR

jI
=

k1

k1

|B|2

|A|2

=
α2

2 + k2
1

α2
2 + k2

1

= 1

It is guaranteed that the electron will be reflected.  This is probably not surprising.  
There may be a phase shift during reflection, but there is no doubt that the electron 
will bounce back.
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Of much more interest is what is happening on the other side.  The wave function 
is:

ψ2(x) = D exp(−α2x)

The probability density in region 2 is

|ψ2(x)|2 = |D|2 exp(−2α2x)

This says that there is a non-zero probability that the electron can be on the other 
side of the barrier.  The probability drops off exponentially into the barrier, so the 
electron can’t penetrate far, but it can penetrate.  This is completely non-classical. 

If the barrier were very thin, the electron may be able to squeeze past it and 
appear on the other side.

The average depth of penetration into the barrier is 2α2.
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Tunneling through a square barrier

So can an electron penetrate a classically impenetrable barrier?  It’s easy to set up 
a potential to look at this problem.  The math is slightly tedious, but the result 
makes the effort worthwhile.

A simple square barrier is shown at 
right.  The barrier has energy height of 
Uo and width of L.  An electron is 
incident from the left, and it’s energy is 
less than the barrier height, E < Uo.

incident

reflected

transmitted

U = U
o

U = 0

x = 0 x = L

1 2 3
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incident
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We take the same approach as 
previously, but now there are three 
regions to consider.  The general 
solutions in each region are easy.

1-Free electron incident from the left with a likely reflection.

2-With E < Uo, growing and decaying exponentials. (Note that 
   we can’t arbitrarily throw out the growing exponential, 
   since the barrier width is finite in this case.) 

ψ1(x) = A exp(ik1x) + B exp(−ik1x)

ψ2(x) = C exp(α2x) + D exp(−α2x)

3-Wave that has tunneled through — outgoing only. (k3 = k1)

ψ3(x) = F exp [ik1(x − L)]
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Since there shouldn’t be any confusion about where k and α come from, we will 
leave off the subscripts.

ψ1(x) = A exp(ikx) + B exp(−ikx)

ψ2(x) = C exp(αx) + D exp(−αx)

ψ3(x) = F exp [ik(x − L)]

Now use connection rules at x=0 and x=L.

ψ1(0) = ψ2(0) A + B = C + D

ikA − ikB = αC − αDψ�
1(0) = ψ�

2(0)

ψ2(L) = ψ3(L) C exp(αL) + D exp(−αL) = F

ψ�
2(L) = ψ�

3(L) αC exp(αL) − αD exp(−αL) = ikF

It looks like 4 equations in 5 unknowns.  Of course, the goal is to find a 
transmission amplitude ratio, F/A.  So we use the four equations to eliminate B, C, 
and D.  
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The algebra is a bit tedious, but after grinding through it (Make sure that you can do 
it yourself.)

F

A
=

i4αk

exp(−αL) (α + ik)2 − exp(αL) (α − ik)2

Yikes!  We can simplify this somewhat by realizing that in many barrier problems it 
is likely that 

exp(αL) >> exp(−αL)

In which case, the transmission expression simplifies to

F

A
≈

(−i4αk) exp(−αL)

(α − ik)2

The tunneling coefficient is then

T =
jT

jI
=

k3|F |2

k1|A|2
=

|F |2

|A|2
=

(4αk)2 exp (−2αL)

(k2 + α2)2
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T =
(4αk)2 exp (−2αL)

(k2 + α2)2

This can be put into a more user-friendly form by expressing k and α in terms of 
energies.

T =
16E (Uo − E)

U2
o

exp (−2αL)

The pre-factor varies between 0 and 4, depending on the value of E and Uo.  
However, the important part of the expression is the exponential dependence on the 
quantity αL.  The tunneling probability goes down rapidly as αL increases.  
Obviously, this happens as the barrier gets wider or becomes higher (which causes 
α to increase).
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T =
1

1 +
�

U2
o

4E(Uo−E)

�
sinh2 (αL)

Tunneling shows up in all kinds of places.  Perhaps one of the most common is in 
the operation of flash memory, where electrons tunnel from the channel of a 
MOSFET to the “floating” gate, where they become trapped.  The extra charge 
changes the FET’s I-V characteristics, thus “storing” information in the FET. 

The “full-blown” (i.e. non-approximate) tunneling expression is

You should show that this expression reduces to the approximate form when αL is 
greater than about 3.  The algebra required to obtain this expression can be 
viewed on the class web site
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Example
An electron (mass = 9.11x10–31 kg) with energy of 1.0 eV is incident on an 
energy barrier of height 1.5 eV.  The barrier is 0.5 nm thick.  Calculate the 
probability that the electron tunnels through.

With the given energies, the pre-factor is:

16E (Uo − E)

U2
o

=
16 (1eV ) (1.5eV − 1eV )

(1.5eV ) 2
= 3.56

The exponential factor is (be careful with units here)

=

�
2 (9.11× 10−31kg) (1.5eV − 1eV ) (1.6× 10−19J/eV )

(1.055× 10−34J · s)2
�
0.5× 10−9m

�
= 1.81

T = 3.56 exp [−2 (1.81)] = 0.0955

αL =

�
2m (U0 − E)

�2 L
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Example 2
Repeat example 1, for the following conditions: E = 0.25 eV and L = 0.5 nm, E = 
1.3 eV and L = 0.5 nm, E = 1 eV and L = 2 nm, and E = 1 eV and L = 0.25 nm.

The calculation is exactly the same as example 1.

E = 0.25 eV and L = 0.5 nm → T = 0.00727

E = 1.3 eV and L = 0.5 nm → T = 0.1875

E = 1 eV and L = 2 nm → T = 1.83x10-6

E = 1 eV and L = 2 nm → T = 0.583

With the probability so high, we should be suspicious of the 
answer.  See the next problem.
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Example 3
What if the electron from example 1 were lighter than a “normal” electron?  For 
example, electrons in GaAs have an effective mass of 0.063mo, where mo is the 
rest mass of a free electron.  What would be the tunneling probability if the 
electron were as light as one in GaAs?

0.063mo = 5.74x10–32 kg.  Using that, along with the same numbers from example 
in the tunneling formula:

E = 1 eV, L = 0.5 nm, and m = 0.063mo → T = 1.43

What?  The problem here is that the tunneling probability is so high that the 
approximate formula from slide 10 doesn’t apply.  (Using the exact formula gives T 
=0.801).

The important point here is that light electrons tunnel more easily and so we might 
observe tunneling effects more readily in semiconductors like GaAs.  We will see 
more about this later.


