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1-D matrix method
We can expand the simple plane-wave scattering for 1-D examples 
that we’ve seen into a more versatile matrix approach that can be used 
to handle many interesting 1-D problems.

The basic idea is that we can break a problem having a complicated 
potential profile into a sequence of constant potential regions.  Since 
we already know the TISE solutions for regions of constant potential, 
the problem boils down to connecting the solutions at each interface.  
A matrix approach lends itself well to this type of problem.

U4

U1

U2

U3

U5

incident

reflected

transmitted

L2 L3 L4

1 2 3 4 5



EE 439 matrix method – 2

Also, we will see that the method can be used to find energy levels in 
confining quantum wells.

Finally, it can be used to obtain approximate solutions to complex 
potential profiles.
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In a multi-layer problem, the difficulties come in handling the 
reflections at all of the interfaces.  However, if we can determine how 
the plane waves relate from one side of a constant potential region to 
the other, including the effects of scattering at the interfaces, then we 
can relate the transmitted amplitude to the incident amplitude (or 
reflected to incident) of the overall system.

For each region, we’ll try to write a matrix of the form:

where [Mn] is a 2x2 matrix describing the nth region. 
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transmission:

reflection:

Finding reflection and transmission coefficients is a process of 
multiplying individual layer matrices to obtain an overall “system” 
matrix.  The reflection and transmission coefficient ratios are found 
from the elements of the system matrix.
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Unfortunately, our approach won’t be quite as tidy as the previous slide 
would imply.  Since the electron waves are scattered at interfaces 
between layers, we need a matrix to describe what happens at each 
interface.  Of course, an interface is not a property of single layer, but 
depends on the layer properties on either side of the interface.

Also, the waves change phase as they propagate across regions where 
E > Un, or they grow and decay exponentially across regions where E 
< Un.  We will need propagation matrices to describe these changes.

Intuitively then, each layer leads to two matrices to be included in the 
sequence, one propagation matrix and one interface matrix.

However, once we have the form of the propagation and interface 
matrices, we’ll see that we can combine them in the right way to 
obtain a simple, one-matrix description of each layer.   However, 
getting to this point is not intuitive, so we’ll take a round-about 
approach, but one that will hopefully give a clearer picture of what 
we’re doing.
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Interface matrices

Case 1 - E > U on both side of the interface.

We assume the interface occurs at x = xn.  For x < xn, the potential is 
Un, and for x > xn, it is Un+1.  Since E > Un and E > Un+1, we use plane-
wave solutions on both sides of the interface.

E

Un

Un+1

xn

�Q ([) = $ exp [LNQ ([ � [Q)] + % exp [�LNQ ([ � [Q)]

�Q+� ([) = & exp [LNQ+� ([ � [Q)] + ' exp [�LNQ+� ([ � [Q)]

$+ % = &+'

LNQ$� LNQ% = LNQ+�&� LNQ+�'

Apply the boundary conditions



EE 439 matrix method – 8

Note that the matrix elements in this case are all real.
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In matrix form
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Case 2 - E > U on the left and E < U on the right.

As before, we assume the interface occurs at x = 
xn.  For x < xn, the potential is Un, and for x > xn, 
it is Un+1.  For x < xn, we need plane wave 
solutions and for x > xn, we use growing and 
decaying exponentials.  

Using the connection rules at the interface:
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�Q ([) = $ exp [LNQ ([ � [Q)] + % exp [�LNQ ([ � [Q)]

�Q+� ([) = & exp [�Q+� ([� [Q)] +' exp [��Q+� ([� [Q)]

$+ % = &+'

LNQ$� LNQ% = �Q+�&� �Q+�'
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Solving for An and Bn in terms of Cn+1 and Dn+1:
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Note that the matrix elements in this case are all complex.

In matrix form
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Case 3 - E < U on the left and E > U on the right.

Same song, third verse. 
For x < xn, the potential is Un, and for x > xn, it is 
Un+1.  For x < xn, we need growing and decaying 
exponentials and for x > xn, we use plane wave 
solutions.

Using the connection rules at the interface:

E
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Un+1

xn

�Q ([) = $Q exp [� ([� [Q)] + %Q exp [�� ([� [Q)]

$Q + %Q = &Q+� +'Q+�

�Q+� ([) = &Q+� exp [LNQ+� ([ � [Q)] + 'Q+� exp [�NQ+� ([ � [Q)]

�Q$Q � �Q%Q = LNQ+�&Q+� � LNQ+�'Q+�
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Solving for An and Bn in terms of Cn+1 and Dn+1:

The matrix elements are again all complex.

In matrix form
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Case 4 - E < U on the left and E < U on the right.

Final stanza.  Everything is growing and 
decaying exponentials.

E

Un Un+1

xn

�Q ([) = $Q exp [�Q ([� [Q)] + %Q exp [��Q ([� [Q)]

�Q+� ([) = &Q+� exp [�Q+� ([� [Q)] +'Q+� exp [��Q+� ([� [Q)]

$Q + %Q = &Q+� +'Q+�

�Q$Q � �Q%Q = �Q+�&Q+� � �Q+�'Q+�

Applying the boundary conditions one last time:
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Solving for An and Bn in terms of Cn+1 and Dn+1:
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The matrix elements are again all real.

In matrix form
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It’s pretty easy to see that k should be 
replaced with -iα in regions where E < U.
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As a traveling wave crosses a region where E > Un, it changes phase.

Propagation matrices

C = A exp(iknLn)

For a wave traveling the -x direction

D = B exp(�iknLn)

Expressed in matrix form:


A
B

�
=


exp(�iknLn) 0

0 exp(iknLn)

� 
C
D

�

E

Un

xn xn+1

kn

A C

B D

For a wave traveling in the +x direction, we can 
write by inspection:


A
B

�
=


P11 P12

P21 P22

� 
C
D

�
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For an evanescent wave in a region where E < Un, 
there is no phase change, but the amplitude must 
change exponentially.

C = A exp(↵nLn)

D = B exp(�↵nLn)

In this case, the “propagation” matrix is


A
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0 exp(↵nLn)
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Looking again at the potential posed on the first slide, we see that we 
need a whole string of interface and propagation matrices.
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The matrix technique lends itself well to programming in Matlab or 
some other language.  However, handling the interfaces is a bit 
unwieldy since the interface matrix involve properties of two layers.  It 
would be nice if everything about a given layer could be included in 
one matrix.  Can this be done?  Look at the form of an interface matrix.

The matrix with kn represents the left side of the interface.  The matrix 
with kn+1 represents the right side of the interface. 

Mathematically, it can be split in two:

Alternatively, the matrix with kn represents the right end of the nth 
layer.  The matrix with kn+1 represents the left end of the (n+1)st layer.
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Look a section of the sequence of matrices from our original problem.

[0] = [,��] [3�] [,��] [3�] [,��] [3�] [,��]

Split the interface matrices

[0] = [/�] [5�] [3�] [/�] [5�] [3�] [/�] [5�] [3�] [/�] [5�]

= [/�] [5�] [3�] [/�] [5�] [3�] [/�] [5�] [3�] [/�] [5�]

= [/�] [0�] [0�] [0�] [5�]

[0Q] = [5Q] [3Q] [/Q]

where

The layer matrix [Mn] contains all of the information about a particular 
layer.  The parameters for layer n show up only in that particular matrix.  
This makes it easier to specify and compute the matrices in a program.
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In the layer, if E > Un (propagating wave)

[0Q] = [5Q] [3Q] [/Q]

If E < Un (evanescent wave)
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�i�n sinh (�nLn) cosh (�nLn)
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Example - tunneling through a square barrier (redux)

incident

reflected

transmitted

U = U
o

U = 0

x = 0 x = L

1 2 3

We’ve done this before and know 
the result.  This may a good test for 
our matrix approach.

There is an electron incident from the left in region 1 (where U = 0), so 
we need a left half matrix for region 1 at x = 0.  We need a layer matrix 
(of the E < U variety) for the barrier.  Finally, we must have a right-half 
matrix for region 3 at x = L.  Since k1 = k3 = k and region 2 is 
characterized by α, we can dispense with the subscripts.

Now comes tedious algebra to get to the answer.  Note that to the find 
the transmission probability, we only need M11.
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M11 = cosh (↵L) +
i
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As we saw earlier when we 
first looked at tunneling.
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Bound states
Can the matrix method be used to learn something about bound states?

It requires a slightly different approach, since a bound state does not 
“propagate” and so we will not calculate transmission or reflection 
probabilities.

A bound state is characterized by the requirement that 
ψ( x → ±∞ ) → 0.

This requirement means that, in the “input” and “output” regions, the 
wave function must be in the form of a decaying exponential.

�
0
B

�
= [M ]

�
C
0

�

M11 = 0

So the matrix procedure would be to find the total matrix description 
for the problem, and then finds the roots of the M11 matrix element.
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Example - finite height square well (redux)

U = 0

U = Uo

+L/2

0 x

–L/2

U = Uo

12 3

To give a quantitative comparison, use Uo = 1 eV and L = 2 nm.

Using the even / odd approach with solving the transcendental 
characteristic equation repeatedly give four solutions:

w1 ≈ 1.31 → E1 = 0.066 eV

w3 ≈ 3.86 → E3 = 0.569 eV

w2 ≈ 2.608 → E2 = 0.260 eV

w4 ≈ 4.96 → E3 = 0.939 eV
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U = 0
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To find the bound states, set M11 = 0 and find the roots.

cos (kL) +
1

2

�
�

k
� k

�

�
sin (kL) = 0

Of course, k and α depend on energy, so we will be finding particular 
energies for which the above equation goes to 0.  An easy way to see 
what is going on is to make a plot.
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Just from the plot, we see that 
the approximate energies are:

E1 ≈ 0.06 eV

E2 ≈ 0.25 eV

E3 ≈ 0.56 eV

E4 ≈ 0.94 eV

With just a bit of effort, the 
numbers can be made more 
precise.


