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The free electron

In order to develop our practical understanding with quantum mechanics, 
we’ll start with some simpler one-dimensional (function of x only), time-
independent problems.  At one time, such problems were considered 
“textbook” only situations.  But in the last 25 years or so, 1-D wells and 
barriers nearly identical to the ones we will discuss have been built using 
semiconductor heterojunction technologies.  Quantum wells are used in 
common devices like QW FETs (used in cell phones and satellite 
communication systems) and QW lasers (used in DVD players).  Also, the gate 
oxide layers in flash memory are tunneling barriers, designed to allow 
electrons to leak through under the right circumstances.

Although we could use other types of particles in our examples, we will 
generally use electrons, since they are key in the behavior of nanoelectronic 
devices.
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We’ve already solved this problem.  The free electron moves in a potential-
free region, U = 0.  In that case, the time-independentSchroedinger equation 
is 
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The general solution is:

This represents plane waves traveling in the +x (first term) and -x directions.  
(Don’t forget about the implicit time dependence.)
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There should be no surprise here.  We justified the S.E. by looking for this 
particular solution.

Note that we must include the possibility of travel in either direction.  In 
looking at more specific problems, boundary conditions (or the way that we 
set up a problem) may let us choose to leave off one term or the other.

The electron energy can take on any value > 0 — there is no quantization.
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The parabolic E-k (E-p) is indicative of 
a free electron.  This is identical to the  
classical result.
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If we try to complete the problem and normalize the wave function, things get a 
bit odd, as we had discussed earlier.  To see the source of the difficulty more 
clearly, consider an electron known to be moving in the +x direction, so that we 
can leave off the second term in the general solution.
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First note that the probability density is a simple constant — there is equal 
probability that the electron can be at any value of x.  This is in line with our 
notions of a plane wave and the uncertainty principle.
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But here’s the bad news: the only way that the normalization can be met is if 
|A|2 → 0.  In other words, the amplitude of the wave must be vanishingly 
small at all points.

In effect, we are saying the electron must be simultaneously everywhere and 
nowhere.  Of course, this is absurd.  And it really isn’t a good description of the 
free electron.  Yes, the wave function is a valid solution of the S.E., but it fails the 
basic test of describing a particle that is in some sense localized in space. 

In order to fix this conundrum, we’ll have to use the superposition principle to add 
together a collection of valid solutions to create what we call a wave packet.  This 
will also lead us to a consideration of the uncertainty principle.  However, we’ll 
save this to later.
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Electrons incident on an energy step
Now consider an electron incident on a step in the energy.  The step goes from a 
constant region where U = 0 to one with a different constant value of potential 
energy Uo.  The energy of the incident electron is E > Uo.

U = U
o

U = 0

x = 0

E > U
o

1 2

Classically, we would assume that the electron zooms over the step, completely 
unaware of its presence.  When the electron is described by a wave however, 
things are not that simple.
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The approach to this kind of problem is to break it into pieces.  For instance, 
we already know the solution in the region where U = 0.  (It’s a free 
electron!)  And we can probably find the solution for the other region 
without much trouble.  Then we can “connect” to the solutions at the 
interface.  So we need to determine the connection rules for step interfaces 
in 1-D problems.

The place to start is with the requirement that the wave function and the 
derivative of the wave function must be both be continuous.  We might 
assume that these conditions must remain true at the interface (as long as the 
interface isn’t too weird), but it’s not necessarily obvious that this should be 
the case.

 �(0) =  +(0)  0
�(0) =  0

+(0)
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We can strengthen the argument by looking at the step interface as the limit of a 
gradual change in potential from one level to another.
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Start by writing the Schroedinger equation, in a slightly modified form:
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Integrating a second time from x = a to x = b
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Now, let the gradual change sharpen up to an abrupt change from one level to the 
other.  This means looking at the limit as b→a.  In this case, the previous two 
equations reduce to 

 0(b) =  0(a)  (b) =  (a)

As we expected.

In particular, letting x=b
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Now, back to our step problem. Again, we will find solutions in the two regions of 
constant potential and then connect them at the interface using our newly found 
connection rules.

In the region x > 0, where U = Uo, the Schroedinger equation is
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In the region 1, x < 0, where U = 0, we already know the solutions.
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Note that this has general form of the free electron problem, except that the energy 
factor in the second term is E – Uo instead of just E, as in the free electron case.  So 
in region 2, the solutions should also have the form of plane waves, but with a 
different value of k.
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Before going further, we should decide what we are looking for.  In this case, we 
might be interested in looking at the probability of the electron being reflected or 
transmitted at the step.  Conceptually, the “experiment” might go something like 
this: Send an electron from the left in region 1 towards the step (This is represented 
by amplitude A.), and look for what is reflected back into region 1 (amplitude B) 
and transmitted into the other region (amplitude C).  This is known as a 
“scattering” problem.
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In this situation, the amplitude D, representing a wave coming from the right in 
region 2, has no role.  In fact, including it would complicate the relatively simple 
picture. So we choose to leave it out.
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Also, we are primarily interested in the ratios B/A and C/A, which would represent 
reflection and transmission amplitudes, respectively.  The problem has now been 
reduced to something manageable.

All that is left is to use the connection rules at x = 0 to match the solutions from 
the two regions.
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 1(0) =  2(0)

A + B = C

 0
1(0) =  0

2(0)

ik1A � ik1B = ik2C

This gives two equations that can be solved for the two ratios B/A and C/A.  
Grunting through the algebra gives (Be sure to do this for yourself.):

B/A =
k1 � k2

k1 + k2

C/A =
2k1

k1 + k2

A remarkable result is immediately 
apparent: Since B/A ≠ 0, the electron 
may be reflected from the step, even 
though E > Uo.
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The coefficient ratios can be written in terms of the energies involved.
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Interesting things:

As E → Uo, B/A → 1 and C/A → 2

As E → ∞, B/A → 0 and C/A → 1 This seems OK.  If the “barrier” is vanishingly 
small, it looks like a classical barrier.

It seems intuitive that the reflection and transmission should sum to 1.  (It 
has to be one or the other.)  But, clearly

B

A
+

C

A
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Of course, we knew that this would not be right.  We have to work with 
probability.
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Using probability densities:

Oops.  Those don’t add up to 1 either.  What’s going on here?
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Probability flux

Probability densities are stationery — as they must be for a solution to the TISE.  
They give information about the likelihood of finding the electron at a particular 
place.  We are looking for the likelihood of reflection or transmission for an 
electron propagating towards a step.  Somehow, we must incorporate the notion 
that the the electron is moving and scattering from the step. 

We need the “probability flux”.  To get there, we start with the idea that an 
indestructible object, like an electron, must maintain normalization, i.e. once the 
wave function is normalized, it must remain normalized.  Mathematically, 
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Any wave function that is a solution to the Schroedinger equation will satisfy this 
condition.
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Substituting in and noting that some terms cancel:
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We can use the Schroedinger equation to find an expression for the time-
derivative of the wave function, and its complex conjugate
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This can be re-written slightly
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Look carefully at what this equations is saying to us.  The time-derivative of a 
density function (in this case, probability density) is equal to the spatial derivative 
of something else.  You’ve seen these kind of equation before — it is a continuity 
relation.  The quantity inside the bracket must be a flux (or current).
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Diffusion of dopant atoms in a crystal (EE 432)

charge in a semiconductor (EE 432)
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The quantity in brackets is the probability flux.

Recall that flux is a quantity per unit area per unit time.  Flux is a way of defining 
the flow of a quantity.  Fluxes are the quantities that should be conserved in the 
scattering situation: incident flux = reflected flux + transmitted flux.
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Applying these results to the scattering problem

The reflection coefficient would be the ratio of the reflected probability flux to the 
incoming probability flux. (Be careful with the negative sign on the negative-
traveling flux)  The transmission coefficient is the ratio of the transmitted flux to the 
incident flux.
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Note that R + T = 1, which is a comforting result.  The coefficients can also be 
expressed in terms of the relevant energies. (Try it.)


