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The one-dimensional problems we’ve been examining can can carry us 
a long way — some of these are directly applicable to many 
nanoelectronics problems — but there are some important problems 
that are inherently three-dimensional.  We need to know how to 
handle those.  Fortunately, the approach is not significantly different 
from the 1-D approach. Not surprisingly, the math can become more 
involved.

three-dimensional quantum problems

The extension to 3 dimensions requires a modification of the kinetic 
energy term, since momentum is, in general, a vector.
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(For time-independent potentials, the time dependence can be 
separated out in the 3-D case just as it was in the 1-D case, and the 
time-dependence will be of the form exp(-iωt).)

With that change, the time-independent Schrödinger equation in 3-D is
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In 3-D, the free-electron S.E. is
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The simplest solution is still a plane wave, but the form is slightly more 
complex:

The above solution represents a plane wave traveling in the direction 
of the wave vector.

The energy still has a familiar form

Exercise: Check that the wave function above is a solution to the 3-D 
free-electron S.E. with the energy as given.  Also, show that the 3-D 
result reduces to the 1-D if ky = kz = 0.
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As we increase dimensions, there will be a corresponding increase in 
the “quantum numbers” for a given problem.

For instance, for a 1-D plane wave or a 1-D quantum well, there was 
only one parameter to characterize a state: k in the case in the wave or 
n for the well.   A 3-D plane wave requires three wave-numbers, kx, ky, 
and kz.  Even though we have yet to see it, you might guess that a 3-D 
quantum well will need three quantum numbers. (nx, ny, nz ?)  The 
hydrogen atom will also need three parameters (n, l, ml). There is a 
direct correspondence between the number of dimensions and the 
number of quantum indices required.
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Solving the 3-D Schroedinger equation looks daunting, but often can 
be approached using the old separation of variables trick.

If the potential function depends on only one dimension, or can be 
written as a sum of 3 one-dimensional potentials, then separation of 
variables will work.

In that case, you would start by writing the full wave-function as the 
product of three wave-functions, each of which depends on only one 
variable.
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Inserting into the 3-D Schroedinger equation:

Nasty.

Work through the derivatives, and then divide everything by 
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The long equation divides into three pieces.  Each piece is a function of 
only one variable.  The 3 pieces together sum to a constant.

The only way that this can be true for all values of x, y, z is if each 
piece is individually equal to a constant.

OK, now we’re getting somewhere.  Through separation of variables, 
we turned one 3-D problem into three 1-D problems.  And we know a 
little bit about solving some 1-D problems.

in x:

and similar for the other dimensions.
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Example: quantum dot
As an example, consider the situation of an electron confined in all 
three dimensions by infinitely high barriers.  The barriers are located at 
planes defined by x = 0, x = Lx, y = 0, y = Ly, z = 0, and z = Lz.  The 
potential can be viewed as three 1-D barrier problems – one for each 
dimension – added together.

As we’ve seen, the analysis is made much easier by the fact that we 
can break this into three identical and well-known 1-D problems.

Using the previously obtained results for the 1-D infinitely deep well. 
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Inserting the pieces to form the complete solution:

Each state is characterized by the three quantum numbers, nx, ny, nz.  
We can denote the different states (nx ny nz)

Note that in some cases, different states will have the same energy.  
This is known as degeneracy.  For example, if the quantum box is a 
cube (Lx = Ly = Lz), then states with quantum numbers (2 1 1), (1 2 1), 
and (1 1 2) will all have the same energy and so are degenerate.  There 
are many other degenerate combinations.
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