three-dimensional quantum problems

The one-dimensional problems we’ve been examining can can carry us
a long way — some of these are directly applicable to many
nanoelectronics problems — but there are some important problems
that are inherently three-dimensional. We need to know how to
handle those. Fortunately, the approach is not significantly different
from the 1-D approach. Not surprisingly, the math can become more
involved.

The extension to 3 dimensions requires a modification of the kinetic
energy term, since momentum is, in general, a vector.
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With that change, the time-independent Schrodinger equation in 3-D is

hZ
—5- VA (x,y,2) + U (x,y,2) ¥ (v,9,2) = E¥ (x,9,2)
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(For time-independent potentials, the time dependence can be
separated out in the 3-D case just as it was in the 1-D case, and the

time-dependence will be of the form exp(-iwt).)
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In 3-D, the free-electron S.E. is

h2
—ﬂv% (x,v,2) = E¥ (x,y,z)
The simplest solution is still a plane wave, but the form is slightly more
complex:

k = keay + kya, +k.a,  wave vector

Y () = Aexp (iE-?)

7= xd, W.T/ zd, position vector

The above solution represents a plane wave traveling in the direction
of the wave vector.

The energy still has a familiar form

2k SREE P A mE . MDY
E=——  where k> =k +k, +k;
2m s

Exercise: Check that the wave function above is a solution to the 3-D
free-electron S.E. with the energy as given. Also, show that the 3-D

result reduces to the 1-D if k, =k, = 0.
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As we increase dimensions, there will be a corresponding increase in
the “quantum numbers” for a given problem.

For instance, for a 1-D plane wave or a 1-D quantum well, there was
only one parameter to characterize a state: k in the case in the wave or
n for the well. A 3-D plane wave requires three wave-numbers, k, k,,
and k. Even though we have yet to see it, you might guess that a 3-D
quantum well will need three quantum numbers. (1, 1y, n, ?) The

hydrogen atom will also need three parameters (1, I, m)). There is a
direct correspondence between the number of dimensions and the
number of quantum indices required.
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Solving the 3-D Schroedinger equation looks daunting, but often can
be approached using the old separation of variables trick.

If the potential function depends on only one dimension, or can be
written as a sum of 3 one-dimensional potentials, then separation of
variables will work.

U(x,y,z) =U(x)+ U(y) + U(z)

In that case, you would start by writing the full wave-function as the
product of three wave-functions, each of which depends on only one
variable.

(0 (x7yaz) = Uy (x) wy (y) (8 (Z)
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Inserting into the 3-D Schroedinger equation:

_h_VZ [pr (x) ¢y (y) Y, (Z)]

2m

+ [Uy (%) + Uy (y) + Uz (2)] [thx (2) ¥y () %2 (2)]

= E [¢x (x) ¥y () ¥: (2)]
Nasty.

Work through the derivatives, and then divide everything by
Ux (%) Yy (y) ¥z (2)
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The long equation divides into three pieces. Each piece is a function of
only one variable. The 3 pieces together sum to a constant.

fx)+fy) +f(z) =E

The only way that this can be true for all values of x, y, z is if each
piece is individually equal to a constant.
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OK, now we're getting somewhere. Through separation of variables,
we turned one 3-D problem into three 1-D problems. And we know a
little bit about solving some 1-D problems.

h? 0%y (x)

in x: e b =B s (o]

and similar for the other dimensions.
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Example: quantum dot

As an example, consider the situation of an electron confined in all
three dimensions by infinitely high barriers. The barriers are located at
planes definedby x =0, x =Ly, y=0,y=L,, z=0, and z = L,. The
potential can be viewed as three 1-D barrier problems — one for each

dimension — added together.

As we've seen, the analysis is made much easier by the fact that we
can break this into three identical and well-known 1-D problems.

Using the previously obtained results for the 1-D infinitely deep well.

Yy (x) = Ay sin (kyx) vy (y) = Aysin (kyy) Y, (z) = Az sin (k,z)
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Inserting the pieces to form the complete solution:
¥ (x,y,z) = Asin (kex) sin (kyy) sin (k,z)
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Each state is characterized by the three quantum numbers, n,, ny, n..
We can denote the different states (1, 1 1)

Note that in some cases, different states will have the same energy.
This is known as degeneracy. For example, if the quantum box is a

cube (Ly = Ly = L,), then states with quantum numbers (2 1 1), (1 2 1),
and (1 1 2) will all have the same energy and so are degenerate. There
are many other degenerate combinations.
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