
EE 285 structs – �1

Struct
Suppose that you have an problem in which you would like to manipulate
some data about a group of individuals. For example, if you are teaching
class you might have some scores from students' work that you would like to
manipulate.

first
name

last
name

quiz 1 quiz 2 quiz 3 lab 1 lab 2 lab3 Exam

Alan Turing 8 7 5 7.8 8.4 6.2 8.1

Ada Lovelace 10 8 9 9.1 8.5 7.5 8.9

Grace Hopper 10 10 8 9.5 10.0 8.4 9.4

You might consider making 7similar arrays:

quiz1[3], quiz2[3], lab1[3], exam[3], etc.

Each student's information would correspond to one index — 0 for Alan, 1 for
Ada, and 2 for Grace. This seems a bit unwieldy, because you have match the
corresponding elements from each array to get all the information about single
individual. You might consider a 2D array, but then there is a problem that
there are several different data types — you can't mix data types in an array.

EE 285 structs – �2

It would make the most sense if we could group together all of the
different bits of information for a single individual. Essentially, grouping
things horizontally rather the vertically in the table from the previous
slide. In a sense, this is like a special type of array that allows different
types to be grouped together.

Struct

Because this is such a common situation in manipulating data —
basically we are talking about creating a database — that C allows for
the definition of “data containers” that group together different variables
that are all related. These are called structs.

Structs are simple to set up and use. They can simplify the process of
organizing the data in your programs.

The process starts by defining a new variable using the keyword: struct.

EE 285 structs – �3

struct studentData {
int quiz1;
int quiz2;
int quiz3;
double lab1;
double lab2;
double lab3;
double exam;

};

This defines a new variable type called subjectData. This plays the
same role as the int, double, char, etc. that we have used since
day one. This is an aggregate data type, since it consists of a
combination of data members (quiz1, quiz2, lab1, exam etc.)

Note that the above lines simply provide a template for the new data
structure. No memory has been allocated yet. To do that, we must
declare variables, as we have always done in the past.

data members

note the semi-colon here.

This is the structure tag. It is
optional, but can be useful for
declaring variables later.

EE 285 structs – �4

Declaring variables
There are two ways for declaring variable with structs. First, they can be
included in the struct definition.

Note: no tag used here.

Three variables are declared. Now memory is allocated, although
nothing is stored yet.

struct {
int quiz1;
int quiz2;
int quiz3;
double lab1;
double lab2;
double lab3;
double exam;

} at, al, gh;

EE 285 structs – �5

Declaring variables
Secondly, variables can be declared separately from the definition.

struct studentData{

int quiz1;
int quiz2;
int quiz3;
double lab1;
double lab2;
double lab3;
double exam;

};

struct studentData at, al, gh;

Now the tag is necessary

This is analogous to variable declarations that we have done in the past.
Again, memory has been set aside for all of the data, but no values have
been stored yet.

EE 285 structs – �6

Initializing values
The members of the struct can be initialized when the struct variable is
declared, similar to the way that an array might be initialized.

This declares new struct variables at, al, and gh and initializes the
data members to the values shown. Note that the member types must
match up! Alternatively, the data members can be filled in later.

struct studentData{

int quiz1;
int quiz2;
int quiz3;
double lab1;
double lab2;
double lab3;
double exam;

};

struct studentData at = { 8, 7, 5, 7.8, 8.4, 6.2, 8.1 };
struct studentData al = { 10, 8, 9, 9.1, 8.5, 7.5, 8.9 };
struct studentData gh = { 10, 10, 8, 9.5, 10.0, 8.4, 9.4 };

EE 285 structs – �7

dot operator
To access the individual members of the struct, the dot operator is used. Here
is bait of code illustrating the use of the "dot". (The struct definition and
declarations are some as on previous slides and are not included below.)

Basically, anything we could do before with a conventional variable can
now be done with a data member that is part of a struct.

int main(){

 int qt;
 double x;

 struct studentData at = { 8, 7, 5, 7.8, 8.4, 6.2, 8.1 };
 struct studentData al = { 10, 8, 9, 9.1, 8.5, 7.5, 8.9 };
 struct studentData gh = { 10, 10, 8, 9.5, 10.0, 8.4, 9.4 };

 at.quiz1 = 10;
 x = al.exam;
 qt = gh.quiz1 + gh.quiz2 + gh.quiz3;

 printf("%d %4.1lf %d\n\n", at.quiz1, x, qt);

 return 0;
}

10 8.9 28

Program ended with exit code: 0

EE 285 structs – �8

Initializing values
So an alternative approach to initializing values in the struct would be
do it after it is declared using the dot notation.

struct studentData{

int quiz1, quiz2, quiz3;
double lab1, lab2, lab3, exam;

};

struct studentData at;

at.quiz1 = 8;
at.quiz2 = 7;
at.quiz3 = 5;
at.lab1 = 7.8;
at.lab2 = 8.4;
at.lab3 = 6.2;
at.exam = 8.1;

Or the user can enter them using scanf(). Or use rand(). Or maybe
they are the result of some calculation. Or whatever.

EE 285 structs – �9

Example (average score of quiz 1)

#include <stdio.h>

struct studentData{
 int quiz1, quiz2, quiz3;
 double lab1, lab2, lab3, exam;
};

int main(){

 double q1Avg;

 struct studentData at = { 8, 7, 5, 7.8, 8.4, 6.2, 8.1 };
 struct studentData al = { 10, 8, 9, 9.1, 8.5, 7.5, 8.9 };
 struct studentData gh = { 10, 10, 8, 9.5, 10.0, 8.4, 9.4 };

 q1Avg = (at.quiz1 + al.quiz1 + gh.quiz1)/3.0;

 printf("The average score of quiz 1 is %4.2lf.\n\n", q1Avg);

 return 0;
}

The average score of quiz 1 is 9.33.

Program ended with exit code: 0

EE 285 structs – �10

#include <stdio.h>

struct studentData{
 int quiz1, quiz2, quiz3;
 double lab1, lab2, lab3, exam;
};

int main(){

 int quizTotal;
 double labTotal, total;

 struct studentData at = { 8, 7, 5, 7.8, 8.4, 6.2, 8.1 };
 struct studentData al = { 10, 8, 9, 9.1, 8.5, 7.5, 8.9 };
 struct studentData gh = { 10, 10, 8, 9.5, 10.0, 8.4, 9.4 };

 quizTotal = at.quiz1 + at.quiz2 + at.quiz3;
 labTotal = at.lab1 + at.quiz2 + at.quiz3;
 total = 33.3*quizTotal/30.0 + 33.3*labTotal/30.0 + 33.3*at.exam/10.0;

 printf("The total score for Alan is %4.2lf.\n\n", total);

 return 0;
}

Example (total score for Alan)
Calculate a total score, if weighting is 33.3% quizzes, 33.3% labs, and
33.3% for the exam.

The total score for Alan is 71.15.

Program ended with exit code: 0

EE 285 structs – �11

Arrays of structs
Declaring an array of structs is identical to the procedure of declaring an
array of any of the other standard data types. Declaring an array of
structs will reserve a continuous block of memory that will hold all the
members of the structs (elements) of the array. Using the same struct
definition

struct studentData{

int quiz1, quiz2, quiz3;
double lab1, lab2, lab3, exam;

};

struct studentData peeps[3]; //an array of 3 structs

Giving us 3 identical instances of the struct subjectData.

Of course, we would need to initialize all of the members.

EE 285 structs – �12

#include <stdio.h>

struct studentData{
 int quiz1, quiz2, quiz3;
 double lab1, lab2, lab3, exam;
};

int main(){

 int i, numOfPeeps = 3;
 double q1Avg = 0;

 struct studentData peeps[numOfPeeps]; //an array of 3 structs

 //Many lines initializing the values of the struct
 //elements are omitted here for brevity.

 for(i = 0; i < 3; i++)
 q1Avg = q1Avg + peeps[i].quiz1;

 printf("The average score of quiz 1 is %4.2lf.\n\n", q1Avg/numOfPeeps);

 return 0;
}

The average score of quiz 1 is 9.33.

Program ended with exit code: 0

Example (average score of quiz 1 — using an array of structs)

EE 285 structs – �13

#include <stdio.h>

struct studentData{
 int quiz1, quiz2, quiz3;
 double lab1, lab2, lab3, exam;

int main(){

 int i, quizTotal, numOfPeeps = 3;
 double labTotal, total;

 struct studentData peeps[numOfPeeps]; //an array of 3 structs

 //Many lines initializing the values of the struct
 //elements are omitted here for brevity.

 for(i = 0; i < numOfPeeps; i++){
 quizTotal = peeps[i].quiz1 + peeps[i].quiz2 + peeps[i].quiz3;
 labTotal = peeps[i].lab1 + peeps[i].lab2 + peeps[i].lab3;
 total = 33.3*quizTotal/30.0 + 33.3*labTotal/30.0 + 33.3*peeps[i].exam/10.0;
 printf("The total score for student %d is %4.2lf.\n\n", i, total);
 }

 return 0;
}

Example (total scores for everyone — using an array of structs)

The total score for student 0 is 74.04.

The total score for student 1 is 87.47.

The total score for student 2 is 93.35.

Program ended with exit code: 0

EE 285 structs – �14

arrays as members of structs
In examining the assembled data types, we see that there are a number
of quizzes and a number of labs for each student. If there is only a few
of each like in our example, having a separate variable for each
individual is probably all right. But if the number of quizzes and labs
were much bigger, then it would make more sense to group those into
arrays. And that is certainly allowed within a struct — an array can be a
"member" of a struct. Let's re-arrange our example struct to use arrays
for the quizzes and labs.

struct studentData{
 int quiz[3];
 double lab[3], exam;
};

struct studentData peeps[3]; //an array of 3 structs

Now, there is an array of structs. Each struct a two arrays within it. To
access an individual element of one of the quiz or lab arrays:

x = peeps[1].quiz[2]; //3rd quiz from 2nd student
y = peeps[3].lab[0]; //1st lab from 3rd student

EE 285 structs – �15

Now we can use our looping techniques to cycles through the various
structs in the array (an outer loop) and through the arrays that are
members of individual structs. One the next slide the program that
calculates total scores, but now using structs with array members.
(Again, the many tedious lines needed to initialize all of the data
members has been omitted.)

In the example, we can see that the calculations for the quiz and lab
totals are done using loops, as used many times in the past. Now the
program will scale easily — even if there are 100 quizzes and 100 labs
(also known as EE 285 from Hell), the code is virtually the same.

Go through the program and follow the loops and indexes.

EE 285 structs – �16

#include <stdio.h>

struct studentData{
 int quiz[3];
 double lab[3], exam;
};

int main(){
 int i, j, quizTotal = 0, numOfPeeps = 3;
 double labTotal = 0, total;

 struct studentData peeps[numOfPeeps];

//Many lines initializing the values of the struct
 //elements are omitted here for brevity.

 for(i = 0; i < numOfPeeps; i++){
 quizTotal = 0;
 labTotal = 0;

 for(j = 0; j < 3; j++){
 quizTotal = quizTotal + peeps[i].quiz[j];
 labTotal = labTotal + peeps[i].lab[j];
 }

 total = 33.3*quizTotal/30.0 + 33.3*labTotal/30.0 + 33.3*peeps[i].exam/10.0;
 printf("The total score for student %d is %4.2lf.\n\n", i, total);
 }

 return 0;
}

The total score for student 0 is 74.04.

The total score for student 1 is 87.47.

The total score for student 2 is 93.35.

Program ended with exit code: 0

EE 285 structs – �17

char and strings
Now that we are using arrays as members of the struct, we might as will
include strings. Our program seems a bit impersonal when it refers to the the
students as "student 0", "student 1", etc. We can certainly include two
character arrays in the struct definition to hold the first and last names.

struct studentData{
 char firt[15], last[15];
 int quiz[3];
 double lab[3], exam;
};

To simplify the manipulation of the strings, we will use the <string.h>
library. Then we can strcpy() to insert the string literals of the names into
the character arrays in the structs. The long list of initializations (which we are
never showing in the program listing) would include line like those below to
take care of the strings.

strcpy(peeps[0].first, "Alan");
strcpy(peeps[0].last, "Turing");
strcpy(peeps[1].first, "Ada");
etc.

The total score program, with names included, is on the next slide.

EE 285 structs – �18

#include <stdio.h>
#include <string.h>

struct studentData{
 char first[15], last[15];
 int quiz[3];
 double lab[3], exam;
};
int main(){
 int i, j, quizTotal = 0, numOfPeeps = 3;
 double labTotal = 0, total;

 struct studentData peeps[numOfPeeps];

//Many lines initializing the values of the struct
 //elements are omitted here for brevity.

 for(i = 0; i < numOfPeeps; i++){
 quizTotal = 0;
 labTotal = 0;

 for(j = 0; j < 3; j++){
 quizTotal = quizTotal + peeps[i].quiz[j];
 labTotal = labTotal + peeps[i].lab[j];
 }

 total = 33.3*quizTotal/30.0 + 33.3*labTotal/30.0 + 33.3*peeps[i].exam/10.0;
 printf("The total score for %s %s is ", peeps[i].first, peeps[i].last);
 printf("%4.2lf.\n\n", total);
 }

 return 0;
}

The total score for Alan Turing is 74.04.

The total score for Ada Lovelace is 87.47.

The total score for Grace Hopper is 93.35.

Program ended with exit code: 0

