
EE 285 pointers and arrays – 1

Using pointers with functions
Recall that our basic use of functions so fare provides for several
possibilities. A function can

1. take one or more individual variables as inputs and return a single
variable as the output.

2. take no inputs (void) and a single variable as an output.

3. take one or more individual variables as inputs and not return
anything as an output (void).

4. take no inputs (void) and not return anything as any output (void)

What’s missing in this initial list of things that functions can do is being
able to take arrays as inputs and being able to return more than one
value as an output. (This would include returning arrays as outputs.)

EE 285 pointers and arrays – 2

To get some sense of the problem, let’s try to make a function that
would swap two integers in memory. We have needed this in several
instances and it might be nice to have a re-usable function that does it.
//EE 285 - swap (bad)

#include <stdio.h>

void swap(int, int);

int main(void){

 int x = 3, y = 8;

 printf("Before swapping: x = %d and y = %d.\n\n", x, y);

 swap(x, y);

 printf("After swapping: x = %d and y = %d.\n\n", x, y);

 return 0;
}

void swap(int a, int b){

 int temp;

 temp = a;
 a = b;
 b = temp;
}

Before swapping: x = 3 and y = 8.

After swapping: x = 3 and y = 8.

Program ended with exit code: 0

Urk!! That didn't work.

EE 285 pointers and arrays – 3

void swap(int a, int b){

 int temp;

 printf("Before swapping: a = %d and b = %d.\n", a, b);

 temp = a;
 a = b;
 b = temp;

 printf(" After swapping: a = %d and b = %d.\n", a, b);
}

To debug what went wrong, we can add a couple of printf statements to
the function.

Before swapping: x = 3 and y = 8.

Before swapping: a = 3 and b = 8.
After swapping: a = 8 and b = 3.

After swapping: x = 3 and y = 8.

Program ended with exit code: 0

So we see that the swapping function is working, but the results are not
getting back to main. Actually, this should not surprise us at all, once
we consider what is going on in memory.

EE 285 pointers and arrays – 4

Oops! The swapping was localized to the function. Nothing happened
back in the main. This was a waste of time.

x 3

y 8

x 3

y 8

a 3

b 8

temp

x 3

y 8

a 3

b 8

temp 3

x 8

y 8

a 8

b 8

temp 3

x 8

y 3

a 8

b 3

temp 3

x 8

y 3

EE 285 pointers and arrays – 5

x 3

y 8

x 3

y 8

&x 0x…

&y 0x…

temp

x 3

y 8

&x 0x…

&y 0x…

temp 3

x 8

y 8

&x 0x…

&y 0x…

temp 3

x 8

y 3

&x 0x…

&y 0x…

temp 3

x 8

y 3

Now it would work!

&x

&y

A light bulb goes off! In the function, try using pointers to the original
variables.

Of course, the code must be modified to pass pointers instead.

EE 285 pointers and arrays – 6

//EE 285 - swap (good)

#include <stdio.h>

void swap(int*, int*);

int main(void){

 int x = 3, y = 8;

 printf("Before swapping: x = %d and y = %d.\n\n", x, y);

 swap(&x, &y);

 printf("After swapping: x = %d and y = %d.\n\n", x, y);

 return 0;
}

void swap(int *aPtr, int *bPtr){

 int temp;

 temp = *aPtr;
 *aPtr = *bPtr;
 *bPtr = temp;
}

Before swapping: x = 3 and y = 8.

After swapping: x = 8 and y = 3.

Program ended with exit code: 0
Yay!

The realization that we can pass pointers to (and from) functions greatly
expands our capabilities. Using pointers, we can "receive" more than
one variable from the function. Even better, we can pass (and receive)
pointers to arrays. Now we can really start doing some things.

EE 285 pointers and arrays – 7

//EE 285 - max of an array

#include <stdio.h>

int max(int*, int);

int main(void){

 int anArray[] = { 4, 8, 3, 9, 2, 1, 10, 6, 5, 72, 0 };
 int maxValue;

 maxValue = max(anArray, 11);

 printf("The maximum value is %d.\n\n", maxValue);

 return 0;
}

int max(int a[], int size){

 int i, biggie = 0;

 for(i = 0; i < size; i++)
 if(a[i] > biggie)
 biggie = a[i];

 return biggie;
}

The maximum value is 72.

Program ended with exit code: 0

Pass a pointer to an array.

EE 285 pointers and arrays – 8

//EE 285 - average of an array

#include <stdio.h>

double average(int*, int);

int main(void){

 int anArray[] = { 4, 8, 3, 9, 2, 1, 10, 6, 5, 12, 0 };
 double avgValue;

 avgValue = average(anArray, 11);

 printf("The average value is %5.3lf.\n\n", avgValue);

 return 0;
}

double average(int* aPtr, int size){

 int i;
 double sum = 0;

 for(i = 0; i < size; i++)
 sum = sum + *(aPtr + i);

 return sum/size;
}

The average value is 5.455.

Program ended with exit code: 0

EE 285 pointers and arrays – 9

//EE 285 - bubble sort an array

#include <stdio.h>

void bubbleSort(int*, int);
void printArray(int*, int);

int main(void){

 int anArray[] = { 4, 8, 3, 9, 2, 1, 10, 6, 5, 12, 0 };

 printArray(anArray, 11);
 bubbleSort(anArray, 11);
 printArray(anArray, 11);

 return 0;
}

/* printArray function */

void printArray(int a[], int size){

 int i;

 printf("The array is { ");
 for(i = 0; i < size ; i++)
 printf("%d ", a[i]);

 printf("}\n\n");
}

Use functions to bubble sort an array. (Bubble sort function is on following page.)

EE 285 pointers and arrays – 10

/* bubblesort function */

void bubbleSort(int a[], int size){

 int i, j, swap;

 for(i = 0; i < size - 1 ; i++){
 for(j = 0; j < size - 1; j++){
 if(a[j+1] > a[j]){
 swap = a[j];
 a[j] = a[j+1];
 a[j+1] = swap;
 }
 }
 }
}

The array is { 4 8 3 9 2 1 10 6 5 12 0 }

The array is { 12 10 9 8 6 5 4 3 2 1 0 }

Program ended with exit code: 0

EE 285 pointers and arrays – 11

Write a function that generates a string with random characters.
(main() is below and the functions are on the next page.)

//EE 285 - generate a random array

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void randCharArray(char*, int);
void printCharArray(char*);

int main(void){

 const int SIZE = 11; //10 characters + '\0'
 char cArray[SIZE];

 srand((int)time(0));

 randCharArray(cArray, SIZE);
 printCharArray(cArray);

 return 0;
}

Note: Printable ASCII characters have decimal values from 32 to 126.
(ASCII code 32 coresponds to space. See https://en.wikipedia.org/
wiki/ASCII .)

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII

EE 285 pointers and arrays – 12

/* print a character array */

void printCharArray(char a[]){
 int i = 0;
 printf("The array is: ");
 while(a[i] != '\0'){
 printf("%c ", a[i]);
 i++;
 }
 printf("\n\n");
}

/* generate random character array */

void randCharArray(char a[], int s){
 int i;
 for(i = 0; i < s - 1 ; i++)
 a[i] = rand()%94 + 32;

 a[i] = '\0'; //Add the trailing 0.
}

The array is: 7 U # Q n < y 3 z |

Program ended with exit code: 0

EE 285 pointers and arrays – 13

//EE 285 - bubble sort an array
#include <stdio.h>

void bubbleSort(int*, int);
void printArray(int*, int);

int main(void){

 int anArray[] = { 4, 8, 3, 9, 2, 1, 10, 6, 5, 12, 0 };
 int length;

 length = sizeof(anArray) / sizeof(anArray[0]);

 printf("The array size is %d.\n\n", length);

 printArray(anArray, length);
 bubbleSort(anArray, length);
 printArray(anArray, length);

 return 0;
}

Sizeof function

The array size is 11.

The array is { 4 8 3 9 2 1 10 6 5 12 0 }

The array is { 12 10 9 8 6 5 4 3 2 1 0 }

Program ended with exit code: 0

Use this to get the size (number of bytes) of something stored in memory.
With this, we do not need to know ahead of time how big an array is.
Below is the bubble sort main() that uses sizeof() to figure out how
big (how many elements) are in the array. The functions are unchanged
and not included below.

