
EE 285 pointers and arrays – 1

Arrays and pointers
A dirty little secret revealed. When we have used arrays in the past, we
have been using pointers all along. The array notation is simply another
way of expressing pointers for things that are stored in contiguous
sections of memory.

When we declare an array, like

 int anArray[8];

the compiler takes this to mean a pointer, called anArray, pointing to a
chunk of memory corresponding to an integer, along with 7 more contiguous
integer-sized chunks of memory. Thus we can access the elements using
pointers directly.

 *anArray refers to the value stored in the first array element.

 *(anArray + 1) refers to the value stored in the second array element.

 etc.

Thus

 *(anArray + n) is equivalent to anArray[n], where n is an integer.

EE 285 pointers and arrays – 2

//EE 285 - still more fun with pointers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void){

 int anArray[8]; //an array of integers
 int* intPtr; //a pointer to a integer
 int i;

 srand((int)time(0));

 for(i = 0; i < 8; i++){

 anArray[i] = rand()%10 + 1;
 intPtr = &anArray[i];
 printf(“%d: %d at %p.\n”, i, *intPtr, (void*)intPtr);
 }

 printf("\n\n");
 return 0;
}

Recall this program:

EE 285 pointers and arrays – 3

//EE 285 - arrays & pointers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void){

 int anArray[8]; //an array of integers
 int i;

 srand((int)time(0));

 for(i = 0; i < 8; i++){

 *(anArray + i) = rand()%10 + 1;
 printf(“%d: %d at %p.\n”, i, *(anArray + i), (void*)(anArray + i));
 }

 printf("\n\n");
 return 0;
}

0: 2 at 0x7ffeefbff450.
1: 7 at 0x7ffeefbff454.
2: 9 at 0x7ffeefbff458.
3: 6 at 0x7ffeefbff45c.
4: 6 at 0x7ffeefbff460.
5: 3 at 0x7ffeefbff464.
6: 6 at 0x7ffeefbff468.
7: 3 at 0x7ffeefbff46c.

Program ended with exit code: 0

It behaves identically.

EE 285 pointers and arrays – 4

//EE 285 - arrays & pointers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void){

 int anArray[8]; //an array of integers
 int *aPtr;
 int i;

 srand((int)time(0));

 aPtr = anArray; //pointer points to first array element

 for(i = 0; i < 8; i++){

 *aPtr = rand()%10 + 1;
 printf(“%d: %d at %p.\n”, i, *aPtr, (void*)(aPtr));
 aPtr = aPtr + 1;
 }

 printf("\n\n");
 return 0;
}

A slight modification
0: 5 at 0x7ffeefbff450.
1: 6 at 0x7ffeefbff454.
2: 4 at 0x7ffeefbff458.
3: 5 at 0x7ffeefbff45c.
4: 2 at 0x7ffeefbff460.
5: 1 at 0x7ffeefbff464.
6: 1 at 0x7ffeefbff468.
7: 4 at 0x7ffeefbff46c.

Program ended with exit code: 0

Same result.

Could use aPtr++, in place of aPtr = aPtr + 1.

EE 285 pointers and arrays – 5

//EE 285 - find the max, redux

#include <stdio.h>

int main(void){

 int anArray[] = {-2, 7, 16, 9, -14, 4, 8, 9, 21, 1};
 int i, max = -50;

 for(i = 0; i < 10; i++){

 if(*(anArray + i) > max)
 max = *(anArray + i);
 }

 printf(“The biggest integer is %d.”, max);

 printf("\n\n");
 return 0;
}

The biggest integer is 21.

Program ended with exit code: 0

EE 285 pointers and arrays – 6

//EE 285 - interleave 2 arrays
#include <stdio.h>

int main(void){
 int array1[] = {-2, 16, -14, 8, 21};
 int array2[] = {7, 9, 4, 9, 1};
 int array3[10];
 int *aPtr1, *aPtr2, *aPtr3; //3 pointers
 int i = 0;

 aPtr1 = array1;
 aPtr2 = array2;
 aPtr3 = array3;

 while (i++ < 5){
 *(aPtr3++) = *(aPtr1++);
 *(aPtr3++) = *(aPtr2++);
 }

 aPtr3 = array3;
 for(i = 0; i < 10; i++)
 printf("%d ", *(aPtr3++));

 printf("\n\n");
 return 0;
}

EE 285 pointers and arrays – 7

 while (i++ < 5){
 *(aPtr3++) = *(aPtr1++);
 *(aPtr3++) = *(aPtr2++);
 }

All of the action is inside the while loop. (Note, a for loop would have
worked just as well.)

The first element of array3 is made equal to the first element of
array1. The pointers are incremented so that aPtr3 is pointing to the
second element of array3 and aPtr1 is pointing to the second
element of array1. 
 
Then, the second element of array3 (pointed to by aPtr3) is made
equal to the first element of array2 (pointed to by aPtr2). Both of
these pointers are incremented so that aPtr3 is pointing to the third
element of array3 and aPtr2 is pointing to the second element of
array2.

To see how it works, consider what happens during the first time through
the loop (i = 0):

EE 285 pointers and arrays – 8

Look at memory map at the very end of the first loop.

array3[0] -2

array3[1] 7

array3[2]

array3[3]

array3[4]

array3[5]

array3[6]

array3[7]

array3[8]

array3[9]

array1[0] -2

array1[1] 16

array1[2] -14

array1[3] 8

array1[4] 21

array2[0] 7

array2[1] 9

array2[2] 4

array2[3] 9

array2[4] 1

aPtr1

aPtr2

aPtr3

EE 285 pointers and arrays – 9

while (i < 5){
 *aPtr3 = *aPtr1;
 aPtr3 = aPtr3 + 1;
 aPtr1 = aPtr1 + 1;
 *aPtr3 = *aPtr2;

aPtr3 = aPtr3 + 1;
 aPtr2 = aPtr2 + 1;
 i++;
}

If all of the nested increments are confusing at first, note that every step
can be done explicitly, as shown below.

In fact, when first putting together a program like this, it might be clearer
to start with something more explicit like this, and then combine the
various parts to reduce the code to the version shown initially. Again,
be careful with i++ and ++i, when incrementing.

EE 285 pointers and arrays – 10

//EE 285 - string length

#include <stdio.h>

int main(void){

 char nameArray[] = "Donald Trump";
 char *djtPtr;
 int length = 0;

 djtPtr = nameArray;

 while (*djtPtr != ‘\0’){

 length = length + 1;
 djtPtr = djtPtr + 1;
 }

 printf("The string length is %d.", length);

 printf("\n\n");
 return 0;
}

Strings are arrays, too

The string length is 12.

Program ended with exit code: 0

EE 285 pointers and arrays – 11

//EE 285 - string length

#include <stdio.h>

int main(void){

 char nameArray[] = “Barak Obama";
 char *bhoPtr;
 int length = 0;

 bhoPtr = nameArray;

 while (*(bhoPtr++) != ‘\0’)
 length++;

 printf(“%s has %d characters.", nameArray, length);

 printf("\n\n");
 return 0;
}

Another version

Barak Obama has 11 characters.

Program ended with exit code: 0

EE 285 pointers and arrays – 12

//EE 285 - reverse a string

#include <stdio.h>

int main(void){

 char nameArray[] = “Abraham Lincoln”;
 char *alPtr, temp;
 int i, length = 0;

 alPtr = nameArray;

 while (*(alPtr++) != ‘\0’)
 length++;

 alPtr = nameArray;

 for(i = 0; i < length/2; i++){

 temp = *(alPtr + i);
 *(alPtr + i) = *(alPtr + length - 1 - i);
 *(alPtr + length - 1 - i) = temp;
 }

 printf(“reversed string is %s.”, nameArray);

 printf("\n\n");
 return 0;
}

One more example

reversed string is nlocniL maharbA.

Program ended with exit code: 0

There may be more efficient ways to do this.

