
EE 285 pointers and arrays – 1

Pointers
Generally, when we have been using variables in our programs, we use
a declared variable name, like theThing. The variable holds a
particular kind of value (integer, double, char, etc.) and we assign a
value in the program, and change the value as needed. We haven’t
worried about where the quantity is stored in memory — we let the
compiler and the operating system take care of that.

memory name value
87

88

89

90 theThing 42
91

92

93

94

95

96

97

However, sometimes it is useful
to know where in the memory
the variable is stored. This is
particularly true when working
with blocks of data. When we
refer to the location of a stored
value, we are using a pointer to
the memory location.

EE 285 pointers and arrays – 2

Pointers: declaring
A pointer is a variable that contains an address to a memory location.
We can access that memory location using the pointer. There are not
generic pointers — each defined pointer must be associated with a
specific data type.

To declare a pointer variable, put an asterisk after the data type. For
example

 int* xPtr;

defines a pointer to a chunk of memory that is the size of an integer. And

 double* zPtr;

defines a pointer to a chunk of memory that is the size of an double.

(You can also put the put the asterisk before the variable name, like

 int *xPtr;

 double *zPtr;

I sometimes use this, but the usual convention is put the asterisk after the
data type.)

EE 285 pointers and arrays – 3

Pointers: NULL
In the program, you will have variables names xPtr and zPtr. No matter
what data type the pointer is associated, the pointer itself is must an
integer. (It might be very big, but it is still an integer.)

It is a good idea (though not essential) to initialize pointers when they
are declared. The keyword NULL is used to indicate pointers that don’t
point to anything.

int* xPtr = NULL;

double* zPtr = NULL;

EE 285 pointers and arrays – 4

To access the data that is stored in memory location pointed to by a
pointer, you add an asterisk in front of (pre-pend) the pointer. For
instance if xPtr points to a memory location that has the integer 17
stored in and zPtr points to a memory location that has the double
–72.963 stored in it, the commands

x = *xPtr;

z = *zPtr;

will put 17 into x and –72.963 into z, where x is a “regular” integer
variable and z is a “regular” double variable.

Pointers: de-referencing

Again: xPtr is a memory location *xPtr is what is stored at the
memory location. (You will probably need to repeat this little mantra
over and over as you are trying learn how to use pointers.)

EE 285 pointers and arrays – 5

If you have a regular variable, and you need to use the address for it,
then add (prepend) an ampersand in front of the variable. For
example if x is a regular integer variable, then &x is the address
where the integer is stored. &x is a pointer. And so if we have
declared variables x and y (of any type) and a pointer xPtr that
points to the corresponding type, then we could write the following:

Pointers: &

x = 42;

xPtr = &x;

y = *xPtr

The first line assigns the integer 42 to the “regular” variable x.

The second line assigns the address of x to xPtr.

The third line assigns the value that is at the address pointed to by
xPtr to the “regular” variable y. So y will be 42.

EE 285 pointers and arrays – 6

Printing out the value of pointers

Generally, we do not want to print (or even know) the value of pointer
is. But while learning how to work with pointers or in debugging, it is
sometimes helpful to print the pointer value. This can clarify make clear
the difference between the pointer (an address) and what it is pointing to
(some sort of data stored at the address).

To print the pointer in printf, use “%p” in the formatting string, and
then typecast the pointer variable to (void*). (Yes, it’s weird. But just
do it. If you will neglect the typecasting, the address will probably still
print OK, but using the typecasting should assure that everything is
kosher.)

See the short program on the next slide.

EE 285 pointers and arrays – 7

//EE 285 - fun with pointers

#include <stdio.h>

int main(void){

 int x, y;
 int* xPtr = NULL;

 x = 42;
 xPtr = &x;
 y = *xPtr;

 printf("x = %d, y = %d, xPtr = %p.", x, y, (void*)xPtr);

 printf("\n\n");
 return 0;
}

x = 42, y = 42, xPtr = 0x7ffeefbff478.

Program ended with exit code: 0

The address is an integer printed in hexadecimal form. (The 0x in front
indicates hex format.)

EE 285 pointers and arrays – 8

//EE 285 - more fun with pointers

#include <stdio.h>

int main(void){

 double burp = 0; //a standard double
 double* burpPtr; //a pointer to a double

 burpPtr = &burp; //burpPtr points to burp

 printf("Enter the value: ");  
 scanf("%lf", burpPtr); //no & !!

 printf("\nburp %4.3lf and its address is %p.", *burpPtr, (void*)burpPtr);

 printf("\n\n");
 return 0;
}

Enter the value: -19.41

burp = -19.410 and its address is 0x7ffeefbff470.

Program ended with exit code: 0

EE 285 pointers and arrays –

//EE 285 - still more fun with pointers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void){

 int anArray[8]; //an array of integers
 int* intPtr; //a pointer to a integer
 int i;

 srand((int)time(0));

 for(i = 0; i < 8; i++){

 anArray[i] = rand()%10 + 1;
 intPtr = &anArray[i];
 printf(“%d: %d at %p.\n”, i, *intPtr, (void*)intPtr);
 }

 printf("\n\n");
 return 0;
}

9

0: 7 at 0x7ffeefbff450.
1: 5 at 0x7ffeefbff454.
2: 9 at 0x7ffeefbff458.
3: 1 at 0x7ffeefbff45c.
4: 5 at 0x7ffeefbff460.
5: 7 at 0x7ffeefbff464.
6: 3 at 0x7ffeefbff468.
7: 9 at 0x7ffeefbff46c.

Program ended with exit code: 0

EE 285 pointers and arrays – 10

Math with pointers
At the most basic level, pointers are just integers, so we could, in
principle, do any sort of math with them. However, because the pointer
integer represents a chunk of memory, there is very little math that
makes sense. Why would you want the product of memory locations? Or
even the sum? Taking the cosine or the square-root of memory address is
meaningless.

The only useful math that we might do with pointers is to add or subtract
a specific value to a pointer. For example:

xPtr++; Increment the pointer value — go to the next
memory location. (Also ++xPtr;)

xPtr--; Decrement the pointer value — go to the
previous memory location. (Also --xPtr;)

xPtr = xPtr + 42; Move ahead 42 memory locations.
(Also xPtr += 42;)

xPtr = xPtr - 17; Move back 17 memory locations.
(Also xPtr -= 17;)

EE 285 pointers and arrays – 11

It is a good idea to use parentheses when working with pointers, so that
everything is dereferenced properly.

aPtr + 1 → points to the next memory location just after aPtr.

*(aPtr + 1) → refers to value stored in the next memory location just after
aPtr

aPtr + n → points to n memory locations beyond aPtr.

*(aPtr + n) → refers to value stored in nth memory location beyond aPtr.

aPtr++ → increments aPtr to point to the next memory location.

*(aPtr++) → refers to the value pointed by to aPtr, and then increments aPtr
to the next memory location. (Note the subtle difference with *(++aPtr)

Note that when we “increment” a pointer, we are not simply adding 1 to it’s
previous value. The increment is by one memory location. Since different
types of variables require different chunks of memory, the true size of the
increment is relative to the type of variable being referenced. The compiler
takes care of all of these details. Values can be subtracted and the decrement
operator works similarly.

EE 285 pointers and arrays – 12

If you have been following along, you probably have an important
question: Why bother with pointers? If the regular variable names gives
you access to the value stored at the particular memory location, then
what value is there in using a pointer to access the value stored at a
particular memory location?

There are two reasons: arrays and functions. (And even better is the
combination of arrays and functions.)

To get a hint of the value of pointers with arrays, look back at the
memory addresses printed in the previous program. Each integer uses
four bytes (32 bits) in memory. The elements of the array are stored in
consecutive 4 bytes chunks of memory. (Note the memory locations are
listed in hex format.) If we know where the first element of the array is
stored, we can access all of the remaining elements based off of the
memory location of the first element. In fact, this is exactly what is
happening when we work with arrays.

