Writing to and reading from files

printf() and scanf() are actually short-hand versions of more
comprehensive functions, fprintf() and fscanf ().

The difference is that fprintf () includes a file pointer in its arguments
to tell the program where the output should be printed. Similarly,
fscanf () has a file pointer that tells where where the input should be
obtained from.

The file pointer is a special data type used for reading and writing files.
It is defined as part of <stdio.h>. The syntax for declaring a file
pointer is

FILE* dataFile; (or FILE *dataFile;)

where dataFile is the pointer to the external information.

EE 285 file /10— 1

stdout and stdin

EE 285

<stdio.h> has definitions for two special file pointers, stdout and
stdin. stdout points to the standard display device, usually your
computer screen. stdin points to the standard input device, usually the
keyboard.

These special pointers can be used with fprintf() and fscanf() to
write to the screen and read from the keyboard. For example:

fprintf(stdout, “*LE", 16.732);

will print 16.732 to the screen. Obviously, this behaves exactly like
printf($1lE", 16.732)5;

Similarly
fscanf(stdin, “%d”, &anInteger);

will read an integer typed from the keyboard and store in the integer
variable aninteger. Clearly, this behaves identically to

scanf (“%d"”, &anInteger);

There is probably not much need to use fprintf instead of printf and

fscanf instead of scanf, but it is good to know about these variations.
file /1O - 2

External files

Writing to and reading from external files is another matter though.

First, we need to realize that the common format for external data files is
simple text. The data stored in the files is simply a one long string of
characters. It should be readable from any text editor. The fprintf
function will take care of converting an integer or a double (or any other
type of variable) into a corresponding string of characters to be written
into the file. Likewise £scanf will take a string of characters from a file
and convert them into the appropriate type of data to be stored within a
variable within the program.

We will need a file pointer to point to the file that you are writing to or
reading from.

To associate a file pointer to a particular file, we use the fopen function.
This function connects the file pointer to a specific file in the computer’s
file system and sets the operation to either read or write.

EE 285 file /O—- 3

When the program is finished reading or writing to the file, the
connection should be shut down using the fclose function. (Note: any
open file pointers will be closed automatically when the program
terminates with a return value of 0. However, good programming
protocol suggests that you care care of this explicitly within your
program.) Here is the syntax for writing:

FILE* myWriteFile;
myWriteFile = fopen(“fileNameOnDisk.dat”, “w");

//Use fprintf() to write some stuff to the file.

fclose(mWriteFile);

And for reading a file:
FILE* myReadFile;
myReadFile = fopen(“fileNameOnDisk.dat”, “r”);

//Use fscanf() to read some stuff from the file.

fclose(mReadFile);

EE 285 file /1O - 4

Comments
* The file extension (like .dat) is optional, but it is probably a good idea.

* A commonly used file type is comma separated variables (.csv). These
files can be read by many other programs, like Excel. Of course, when
writing to something like a .csv file, it is your job to make certain that
the data is arranged in a manner that is expected for that file type.

* If fopen fails to make the connection with a specific file, the pointer is
set to NULL. It is always a good idea to check this before trying to do
any reading or writing.

* When writing to a file, if the the file does not exist, the operating
system will create a new file and make the connection to the file
pointer in the program. (Finding it on the HD may be a challenge.)

* When reading a file, the file must already exist. If it doesn’t, the fopen
function reports the problem by returning a NULL.

* In reading from a file, you will need to know how the data is
organized. You may need some mechanism to determine how much
data is in the file and to know when all of the data has been read.

EE 285 file /O—- 5

Xcode - where do files go?

Go the Xcode 1@ @ © 4 7 = T
preferences. (Under
the Xcode menu.) (Or
use the (shift-comma Derived Data: _Default 2
(> Advance d...

key combination.)

Archives: Default £

If you are using
default settings, there
will be a file path
listed that tells you
where the written files
will go.

Command Line Tools: Xcode 9.3 (9E145)

For example, if | have project titled "write_read_files", and have run a
program in that project, inside the "Derived Date Folder" another folder
will be created with a title something like "write_read_files-
fkymijkqgzittmfrcpvydtucruxdpd". The extra "gibberish" is appended so
that Xcode can keep track of different runs of the same program.

EE 285 file /O—- 6

EE 285

Inside the particular project folder will be a folder called "Build". Inside

that is one called "Products" and inside that is another folder "Debug",

which holds two things in our case: an executable file called
"write_read_files" and the file that our program created —
"writeFile.dat". This is the default location to external files are written to

— and where files should be read from.

The entire file path is: "Users/
account/Library/Developer/
Xcode/DerivedData/Build/
Products/Debug/". Of course,
"account" will be the specific

account name set up on your
Mac.

O © DerivedData
< H = [mi=INERNE L= 5>
Back/Forward View Arrange Action Share Add Tags
DerivedData —+
Name A Date Modified
b ModuleCache.noindex Today at 10:59 AM
v write_read_files-fkymjkgzitfmfrcpvydtucruxdpd T AM
v Build Today at 10:58 AM
b Intermediates.noindex T M
v Products Today at 10:58 AM
v Debug T AM
M write_read_files Today at 10:59 AM
b Index Today at 10:51 AM
info.plist T t 10:5€
= Logs Today at 11:00 AM
OpenQuickly-Referen...Frameworks.index-v1 :
scm.plist Today at 10:51 AM
b Textindex T

1 of 14 selected, 221.49 GB available

file /1O—- 7

EE 285

Using the defaults is OK, but rather unwieldy. You can change the

location of where the files go when compiling and running a program.

To change, go the Xcode preferences and choose the Locations tab at
the top. Click on the "Advanced..." button.

Select the "Custom"
option and choose
"Absolute" from the drop
down. In the "Products"
ine, choose a different

t can be anywhere.
Usually, when I'm
working hard on
programs, | have the

output go to the desktop.

ocation to write the files.

I ents Locations Server & Bots

Locations
11 | | »,::;\._ w; ;
Build Location
Unigque
Shared Folder
© Custom Absolute [V]

Products | /Users/gt/Desktop/
Commat
Intermediates /Users/gt/Desktop/Build/Intermediates.noindex

Index Datastore /Users/gt/Desktop/Index/DataStore

Legacy

......

file /O—- 8

Then folders start showing up on your desktop. The Debug folder holds
the files that are most immediately relevant. As you re-compile and re-
run the program, the new versions are re-written into Debug.

v »
Back/Forward i Arrange Action Share Edit Tags Dropbox

Debug

Favorites Name ~ Date Modified

] ee230 M write_read_files Today at 11:25 AM

E ee285 writeFile.dat Today at 11:25 AM

[ee432
1 ee201
] ee333
£ gtweb
=] eClubs

1 old classes
2 items, 221.45 GB available

When you are all done working, it is probably a good idea to clean up
the desktop and change all settings back to the defaults.

EE 285 file /O—- 9

Visual Studio - where do files go?

EE 285

VS is a little less obtuse that Xcode about file locations.

When you create a project, you are given the location of where the
project files will be stored. The default location is a new folder — ...
\source\repos\ — in your user space on the hard drive. This is where
your code files (main.c, etc) are stored and this is where files generated

by your programs are written to and where files used by your programs
are read from. lIt's pretty easy.

New Project . <

P Recent Sort by: | Default q Search (Ctrl+E) R~
4 Installed s . Vi
B | Empty Project Visual C++ Type: Visual C++ I
P Visual C# - An empty project for creating a local
b Visual Basic DI I Makefile Project Visual C++ application
4 Visual C++ -+
Windows Desktop ©| | Shared Items Project Visual C++
General
Windows Universal
Test
P JavaScript
P Other Project Types
D Online
Not finding what you are looking for?
Open Visual Studio Installer
Name: | EE285_Project
Location: < C:\Users\GT\source\repos > ~ Browse...
Solution: Create new solution
I Solution name: EE285_Project Create directory for solution !
D Add to Source Control
oK Cancel

file /10— 10

For a specific example, | have a project EE285_project (the generic
project that | reuse for most EE 285 examples). In running one of the
example programs from these notes — you will see it a few slides from
now — a file is created and stored in this default location. The
complete path is

C:\Users\GT\source\repos\EE285_Project\EE285_Project\File_of_random_ints.dat

tJCII 1HIQAQIT VVILLI] riririu (WAVENN INTVV 1WVINT

Ve
s

Name

Debug
| EE285_Project.vexproj

EE285_Project.vexproj.filters

i) EE285_Project.vexproj.user

= File of random_ints.dat
Q main.c

Of course, you can change the file location for a project at the time a

project is started.
EE 285 file 1/1O0 — 11

Visual Studio - turning off certain "errors"

In C, writing and reading files is one of the places where errors that can
be exploited by hackers can occur. MSVS "helpfully" warns you about
this possibility when opening a file and provides an MS-only alternative
that is supposed to be "safer": fopen s (). If you use the standard
fopen (), it is flagged as a fatal error when building the project. Of
course, this is quite annoying. You have two options: use their special
fopen s () function or turn off the checking that flags fopen () as an
error.

‘fopen': This function or variable may be unsafe.
Consider using fopen_s instead. To disable
deprecation, use _CRT_SECURE_NO_WARNINGS. See

online help for details.

EE285_Project

(%) c4996

EE 285 file /1O — 12

To turn off the error checking:

1. Open the project properties window (last item under the project
menu or right-click on the project title on the "explorer" pane on the
left.

2. Click on the C/C++ expander triangle and select the Preprocessor
option.

3. In the first [ine — Preprocessor Definitions — change whatever is
there to: _CRT_SECURE_NO_WARNINGS.

4. This will tell the compiler to stop flagging legitimate commands as
errors.

See the screen shots on the next page.

Note that this change will only affect the current project. If you switch
projects or start a new project, you will have to do this again. (This is
one of the reasons why | tend to re-use the same project over and over
and store my various program text files in a separate place.)

EE 285 file /O — 13

EE 285

This is the Preprocessor window.

]
EE285 Project Property Pages * :I = ‘ o ﬁg

Configuration: {Active(Debug)

~ | Platform: |Active(Win32)

4 Configuration Properties
General
Debugging
VC++ Directories
4C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
All Options
Command Line
P Linker
» > Manifest Tool
I XML Document Generator
I» Browse Information
P Build Events
| P Custom Build Step
I Code Analysis

Preprocessor Definitions _MBCS;%(PreprocessorDefinitions)
Undefine Preprocessor Definitions

Undefine All Preprocessor Definitior No

Ignore Standard Include Paths No

Preprocess to a File No
Preprocess Suppress Line Numbers No
Keep Comments No

Preprocessor Definitions
Defines a preprocessing symbols for your source file.

" l Configuration Manager...

=]

—

OK

| cancel

Apply

Make this change...

Preprocessor Definitions

_CRT_SECURE_NO_WARNINGS

Undefine Preprocessor Definitions
Undefine All Preprocessor Definitior No
Ignore Standard Include Paths No

Preprocess to a File

No

Preprocess Suppress Line Numbers No

Keep Comments

No

file 11O — 14

Now some examples.
First us, let's use the old Fahrenheit to Celsius conversion program again,
but this time write the results to a file as well as to the console.
// EE 285 - writing files - example 1

#include <stdio.h>
int main(void) {

FILE* temperatureDataFile;
double tempC, tempF;

temperatureDataFile = fopen("temperature.csv", "w");
if(temperatureDataFile == NULL){
printf("Oops. Something went wrong in creating the file.");
}
else{
for(tempF = -40; tempF <= 220; tempF = tempF + 2){

tempC = 5.0 / 9.0 * (tempF - 32);
fprintf(stdout, "%5.21f, %5.21f\n", tempF, tempC);
fprintf(temperatureDataFile, "%5.21f, %5.21f\n", tempF, tempC);

}

fclose(temperatureDataFile); //Close the file connection.

}

return O0;

EE 285 file /1O — 15

EE 285

Short chunks of the output. The left is from the console and the right is

the written file as viewed using a text editor. (BBEdit on a Mac in this

case.) They are identical, as we would expect.

-4@.
-38.
-36.
-34.
-32.
-30.

-28

-10

-8.00,

0o,
08,
08,
0o,
0o,
08,

.08,
-26.
-24.,
-22.
-20.
-18.
-16.
-14.
-12.

0o,
0o,
08,
08,
0o,
0o,
08,
0o,
0o,

-6.080,
-4.08,
-2.00,

9.00,

-40.
-38.
.78
-36.
-35.
-34.
-33.
-32.
-31.
-30.
-28.
-27.
-26.
-2b.
-24.

-37

-23

-22.22

eo
89

&7
56
44
33
22
11
ee
89
78
67
56
44
33

-21.11
-208.00
-18.89
-17.78

=

-38.
-36.
-34,
-32.
-30.
-28.
-26.
-24,
o
-20.
-18.
-16.
-14.
-12.
-10.
-8.00,
-6.00,
-4.00,
-2.080,

9.00,

= . = = =

=

= = = = = = =

88888888§SSSSSSS

=

-38.89
-37.78
-36.67
-35.56
-34.44
-33.33
-32.22
-31.11
-30.00
-28.89
-27.78
-26.67
-25.56
-24.44
-23.33
-22.22
-21.11
-20.00
-18.89
-17.78

file /1O - 16

// EE 285 - writing files - example 2

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(){
const int ROWS = 10, COLUMNS = 5;
int 1, j, rando;
FILE* randomFile;

srand((int)time(0));

randomFile = fopen("File of random ints.dat", "w");

1f(randomFile == NULL)

printf("Oops. Something bad happened when creating the file.");
else{

for(1 = 1 < ROWS; 1i++){

0;
for(j = 0; j < COLUMNS; Jj++){
rando = rand()%50 + 25;
fprintf(randomFile, "%d ", rando);

}

fprintf(randomFile, "\n");

}

fclose(randomFile); //Close the file connection.

EE 285 file 1/1O — 17

EE 285

Below are the contents of the file "File_of_random_ints.dat" that was
created on the disk. View it with a text editor program.

32
47
65
28
28
58
72
58
42
70

74
69
40
52
44
74
51
54
47
53

48
53
67
54
34
53
37
74
68
66

33
48
67
65
32
41
42
54
61
69

55
34
62
37
35
60
35
46
60
32

file /O — 18

Reading files — fscanf ()

« fscanf () uses a formatting string just like we seen before:
3 6 K e 20 i e A] F B . 3 SR 8 B & L

» fscanf() reads one character at a time, and then goes to the next
character in the line.

* However, it reads in characters for each item until it hits a white space
or end-of-line character. For example, if you used
fscanf(fileptr, "%s", name); to read the string
"Ferd Baloneyhead", only the "Ferd" part would be put into
name. However, if the string was Ferd Baloneyhead", the whole
string would be read into name.

* You can read multiple items with one fscanf (). For example, to
read in the first and last names above, you could use
fscanf(fileptr, "%s %s", first, last); Then, in
reading in "Ferd Baloneyhead", "Ferd" would be put into the
string first and "Baloneyhead" into the string last.

EE 285 file /1O - 19

// EE 285 - reading files - example 1
#include <stdio.h>

int main(){
const int ROWS = 10, COLUMNS = 5;
int i, j, rando, sum = 0;
FILE* readFile;

readFile = fopen("File of random ints.dat", "r"); //Open the file.
1if(readFile == NULL)

printf("Oops. Something bad happened when creating the file.");
else{

for(i = 0; i < ROWS; i++){
for(j = 0; j < COLUMNS; j++){
fscanf(readFile, "%d ", &rando);

printf("% , rando);
sum = sum + rando;

}
printf("\n");
}
fclose(readFile); //Close the file connection.

printf("\nThe total is %d and the average is %5.21f.\n\n", sum, sum/50.0);

EE 285 file /1O — 20

Below is output seen on the screen.

32 74148133155
47 69 53 48 34
65 40 67 67 62
28 52154 65 37
284434 3235
58 74 53 41 60
1215k 37 42 355
58 54 74 54 46
42 47 68 61 60
70 53 66 69 32

The total is 2580 and the average is 51.60.

Program ended with exit code: 0

Note that the read program had to know exactly how the data was
arranged in the file. Maybe that is known and will always be a constant.
But what if it's not? There are couple of simple ways to "tell" the reading
orogram what to expect. One is to put information at the top of the file.
n this case, we might put the number of rows and columns at the top of
the file. These can be used by the reading program to know how big the
‘array" Is.

EE 285 file 110 — 21

As an example, consider another version of the "file-writing" program.
This one also creates a bunch of random numbers and writes them to a
file in the form of a rectangular grid. However to really randomize
things, the program will make a randomly-sized grid of random numbers
— random number of column and random number of rows. (Whew!
That is a lot of randomness.) The number of rows is between 1 and 20,
the number of columns is between 5 and 25, and the values in the array
items are between 25 and 75. The array is created and then printed to
the console and to a file — random_randomness.dat. The written file
also includes the dimensions of the array, which are stored at the “top”
of the file. Example output is shown below.

EE 285 file /1O — 22

// EE 285 - writing files - example 2, version 2
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(){
int rows, columns;
int i, j, rando;
FILE* writeFile;

srand((int)time(0));
rows = rand()%20 + 1;
columns = rand()%21 + 5;

writeFile = fopen("more random ints.dat", "w");

if(writeFile == NULL)
printf("Oops. Something bad happened when creating the file.");

else{
fprintf(writeFile, "%d %d\n", rows, columns);

1 < rows; i++){

for(j 0; j < columns; j++){
rando = rand()%50 + 25;

fprintf(writeFile, "%d ", rando);

printf("%d ", rando);

for(1 = 0;

}
fprintf(writeFile, "\n");

printf("\n");
}

fclose(writeFile); //Close the file connection.

EE 285 file /O — 23

EE 285

This is what is printed to the console.

34
73
67
43
3.3
58
65

60
26
29
50
55
65
69

58
25
26
60
58
35
53

46
26
50
47
45
53
33

67
26
46
31
36
61
45

72
60
64
65
33
32
59

43
64
71
61
37
29
61

60
51
70
44
46
71
47

Program ended with exit

41
37
63
40
69
51
57

34
59
48
30
68
58
50

code:

74
47
30
61
51
28
27
0

55
37
45
47
25
46
66

55
38
52
27
31
25
40

25
36
25
62
68
71
64

40
74
34
29
29
53
48

29
39
61
50
30
30
51

41
52
35
71
50
34
48

43
54
74
34
47
64
50

73
55
37
56
35
36
56

33
52
65
73
34
35
72

54
59
42
53
33
59
43

67
58
70
39
37
61
35

56
40
12
65
61
47
25

This is what is contained in the "more_random_ints.dat" that was
created on the disk. Note the row and column info at the top.

34
73
67
43
813
58

65

60
26
29
50
55
65
69

723D

58
25
26
60
58
35
53

46
26
50
47
45
53
33

67
26
46
31
36
61
45

72
60
64
65
33
32
59

43
64
71
61
37
29
61

60
51
70
44
46
71
47

41
37
63
40
69
51
57

51
59
48
30
68
58
50

74
47
30
61
51
28
27

55
37
45
47
25
46
66

55
38
52
27
31
25
40

25
36
25
62
68
71
64

40
74
34
29
29
53
48

29
39
61
50
30
30
51

41
52
35
71
50
34
48

43
54
74
34
47
64
50

73
55
37
56
35
36
56

33
52
65
73
34
35
72

54
59
42
53
33
59
43

67
58
70
39
37
61
35

56
40
72
65
61
47
25

Then we need to modify the "file reading program" to use the row/

column provided within the file.

file 1/1O — 24

// EE 285 - reading files - example 1, version 2
#include <stdio.h>

int main(){
int columns, rows;
int i, j, rando, sum = 0;
double average;
FILE* readFile;

readFile = fopen("more random ints.dat", "r"); //Open the file.
if(readFile == NULL)
printf("Oops. Something bad happened when creating the file.");
else{
fscanf(readFile, "%d ", &rows); //Read the number of rows.
fscanf(readFile, "%d ", &columns); //And columns.
< rows; i++){

i
0; J < columns; j++){
fscanf(readFile, "%d ", &rando);
printf("%d ", rando);

sum = sum + rando;

}
printf("\n");
}
fclose(readFile); //Close the file connection.

average = sum/(double) (rows*columns);

printf("\nThe total is %d and the average is %5.21f.\n\n", sum, average);

EE 285 file 110 — 25

This is what is printed to the console by the reading program.

84 160158 46 (67 72 143 60 141 51 174 55 55 25 4029 41 43 73 33 54 67 56
TS 2612526126 1601645113759 1473738 36743952 54 555255 58 40
67 29 26 50 46 64 71 70 63 48 30 45 52 25 34 61 35 74 37 65 42 70 72
43 50160 47131 65 61 4440 30 61 47 27 62 29 50 71134 56 73 53 39 65
33+ 55+58-45+136-3313/ 4669 681512531 68 29 30 5047 35 34333761
58 65135 53161 3212971151158 128 46 257153 30 834 164 36 35 59 6047
6569153 133 (45 59161 47 (57 50 127 66 40 64 48 51 48 50 56 72 4335 25

The total is 7856 and the average is 48.80.

Program ended with exit code: 0

One other approach is to simply append an "end-of-file" value at the end
of the "good" data. This works if we don't really care that the data is
some sort "row/column" arrangement. The reading program would then
use a while loop to read in data from the file until it hits the "marker".
The marker would need to be something very distinct from the valid data
in the file, so that there would no chance of mis-interpreting its
meaning.

On the following page is a third version of the file-writing program. It
adds the number -100 at the end of the file as and end-of-file marker.

EE 285 file 110 — 26

// EE 285 - writing files - example 2, version 3
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(){
int rows, columns;
int i, j, rando;
FILE* writeFile;

srand((int)time(0));
rows = rand()%20 + 1;
columns = rand()%21 + 5;

writeFile = fopen("even more random ints.dat", "w");
if(writeFile == NULL)
printf("Oops. Something bad happened when creating the file.");
else{
for(1 = 0; i < rows; i++){
for(j = 0; jJ < columns; J++){
rando = rand()%50 + 25;

fprintf(writeFile, "%d ", rando);
printf("%d ", rando);

}

fprintf(writeFile, "\n");

printf("\n");

}
fprintf(writeFile, "%d\n", -100); //Write the "end-of-file" marker
fclose(writeFile); //Close the file connection.

EE 285 file 110 — 27

This is what is printed to the console.

44
45
67
66
72
42

32
54
57
49
66
45

69
52
60
60
54
55

66
50
66
54
53
47

28
42
26
65
70
69

63
53
25
71
37
74

52
53
25
41
39
74

63
66
67
56
39
49

Program ended with exit

32
26
69
35
61
54

74
73
38
41
28
52

code:

42
65
36
74
48
61
0

29
72
25
64
29
52

45
67
52
44
41
712

48
52
38
30
60
47

36
32
39
41
73
65

33
53
S
65
58
39

29
26
3
70
70
32

44
51
38
28
63
51

52
46
28
63
27
60

52
29
33
29
48
73

This is what is contained in the "more random ints.dat" that was

created on the disk. Note the "-100" at the end. Again, view this with a
text editor.

44
45
67
66
72
42

The reading program simply reads in a long string of numbers, whi
watching for the -100 value — it stops reading when it gets to that
In the program, | printed the numbers to the console. Since there t

32
54
57
49
66
45

=T

69
52
60
60
54
55

66
50
66
54
53
47

28
42
26
65
70
69

63
53
25
71
37
74

52
53
25
41
39
74

63
66
67
56
39
49

32
26
69
35
61
54

74
73
38
41
28
52

42
65
36
74
48
61

29
72
25
64
29
52

45
67
52
44
41
7.2

48
52
38
30
60
47

36
32
39
41
73
65

33
53
51
65
58
39

29
26
31
70
70
32

44
51
38
28
63
ol

52
46
28
63
27
60

52
29
33
29
48
73

e
noint.

ne

file gives no indication of the original row/column arrangement, | can
print the numbers however | want. | chose to print them in rows of 10.

EE 285

file /1O — 28

// EE 285 - reading files - example 2, version 3
#include <stdio.h>

int main(){
int i = -1, rando, sum = 0, readCount = 0;;
double average;
FILE* readFile;

readFile = fopen("even more random ints.dat", "r"); //Open the file.
if(readFile == NULL)

printf("Oops. Something bad happened when creating the file.");
else{

fscanf(readFile, "%d ", &rando);

while(rando != -100){ //Watch for end of file marker.
sum = sum + rando;
readCount++; //Also, need to keep track of how many.
if(i++ < 9) //Print the numbers, 10 to a row.
printf("%d ", rando);
else{
printf("\n%d ", rando); //After 9 items, print the 10th with \n.
i=0;
}
fscanf(readFile, "%d ", &rando);
}
fclose(readFile); //Close the file connection.

average = sum/(double)readCount;

printf("\n\nThe total is %d and the average is %5.21f.\n\n", sum, average

/10— 29

EE 285

This is what the reading program printed to the console. Again, in this
case, the printing format is arbitrary.

44 32 69 66 28 63 52 63 32 74
a2 29145 48136133 129 44 {52 52
45 54152 5014253 153 66126 73
65 12167152132 53126 5114629
67 57 60 66 26 25 25 67 69 38
36 25152 138139 51 {31 3828 33
66 49 60 54 65 71 41 56 35 41
74 64 44 30 41 65 70 28 63 29
72 66154 53170 37 (39 39161 28
48 29 41 60 73 58 70 63 27 48
A2 a5 TS5 dTre O T4 T4 495152
6l =521 72 14716539 (32151 160 73

The total is 6006 and the average is 50.05.

Program ended with exit code: 0

file /O — 30

