
EE 285 arrays & sorting – 1

Arrays
A very common application of arrays is to sort a collection of numbers
(or chars) into an ordered ascending or descending sequence.
Imagine a random sequence of integers: 3 6 2 9 4 7 1. We want to sort
them into an ascending sequence (lowest number first, highest number
last).

Our human brains are actually pretty good at doing this sort of thing,
and we can probably arrange the numbers correctly by inspection — as
long as the list of number isn’t too big. But imagine doing this like a
computer, which is stupid, but fast. The computer can compare only
two items at a time, but it can do a lot of comparisons. Imagine going
through the list one pair of items at a time, comparing them, and then
swapping them in the list if the first is bigger than second. As we go
through the list, the sequence would go like this:

Compare 3 and 6. Is 3 > 6? No. So make no change. 3 6 2 9 4 7 1

Compare 6 and 2. Is 6 > 2? Yes. So swap them. 3 2 6 9 4 7 1

Compare 6 and 9. Is 6 > 9? No. So make no change. 3 2 6 9 4 7 1

EE 285 arrays & sorting – 2

Compare 9 and 4. Is 9 > 4? Yes. So swap them. 3 6 2 4 9 7 1

Compare 9 and 7. Is 9 > 7? Yes. So swap them. 3 2 6 4 7 9 1

Compare 9 and 1. Is 9 > 1? Yes. So swap them. 3 2 6 4 7 1 9

So with 6 comparisons, we have gone through the list once. It more
ordered than the original, but it still not completely ordered. So we
should go through it again. And again. And again. How many times?
For this list, it will take 6 times through to guarantee to that we have
made every possible comparison needed to order the list. Or more
generally, if there are n items, we need n – 1 comparisons within the list,
and then we need to go through that entire process n – 1 times.

The sequence of numbers at each step in this “two-loop” process is
shown on the next page.

EE 285 arrays & sorting – 3

1-1: 3 6 2 9 4 7 1

1-2: 3 2 6 9 4 7 1

1-3: 3 2 6 9 4 7 1

1-4: 3 2 6 4 9 7 1

1-5: 3 2 6 4 7 9 1

1-6: 3 2 6 4 7 1 9

2-1: 2 3 6 4 7 1 9

2-2: 2 3 6 4 7 1 9

2-3: 2 3 4 6 7 1 9

2-4: 2 3 4 6 7 1 9

2-5: 2 3 4 6 1 7 9

2-6: 2 3 4 6 1 7 9

3 6 2 9 4 7 1 2 3 4 6 1 7 9

3-1: 2 3 4 6 1 7 9

3-2: 2 3 4 6 1 7 9

3-3: 2 3 4 6 1 7 9

3-4: 2 3 4 1 6 7 9

3-5: 2 3 4 1 6 7 9

3-6: 2 3 4 1 6 7 9

4-1: 2 3 4 1 6 7 9

4-2: 2 3 4 1 6 7 9

4-3: 2 3 1 4 6 7 9

4-4: 2 3 1 4 6 7 9

4-5: 2 3 1 4 6 7 9

4-6: 2 3 1 4 6 7 9

5-1: 2 3 1 4 6 7 9

5-2: 2 1 3 4 6 7 9

5-3: 2 1 3 4 6 7 9

5-4: 2 1 3 4 6 7 9

5-5: 2 1 3 4 6 7 9

5-6: 2 1 3 4 6 7 9

2 3 1 4 6 7 9

6-1: 1 2 3 4 6 7 9

6-2: 1 2 3 4 6 7 9

6-3: 1 2 3 4 6 7 9

6-4: 1 2 3 4 6 7 9

6-5: 1 2 3 4 6 7 9

6-6: 1 2 3 4 6 7 9

EE 285 arrays & sorting – 4

The process required (n – 1)*(n – 1) comparisons, and a few at the end
were pointless, but it got the job done.

This is called a “bubble sort” (bubbles rise to the top) and is easy to
implement with an array and some nested loops.

The sequence of steps is to (1) assign the n values to an array with n
elements. (2) Set up an inner loop that goes through the array one item
at a time, comparing the item to its neighbor, and swapping them if
appropriate. (3) Then an outer loop repeats this “compare and swap”
process n-1 times.

EE 285 arrays & sorting – 5

EE 285 arrays & sorting – 6

EE 285 arrays & sorting – 7

EE 285 arrays & sorting – 8

EE 285 arrays & sorting – 9

Sorting programs can always be made more efficient. The method that
any program using to do computations is called the algorithm. Making
algorithms more efficient is an important aspect of computer science.
We will not delve deeply into algorithm development in 285, but the
study of the general theory of algorithms is something you might
consider if you are interested in being a better programmer. (ComSci
311.)

One simple way to improve our bubble algorithm is to note that is quite
possible that the list is completely sorted before doing the full (n-1)2
iterations. To do this, we can make a check to see if any changes have
occurred at a particular iteration. If no further changes were made, then
the list is sorted and we can stop.

We will need to add a variable that is set to true if no swaps occur at a
particular step. Before iterating on the outer loop, we can check this
variable and stop if it is true.

EE 285 arrays & sorting – 10

EE 285 arrays & sorting – 11

This is properly ordered, but we were able to skip that last 2376
iterations, about 25% of the maximum possible. Not bad.

