
EE 285 Arduino – timing – 1

The short program to blink the red LED used the delay() function. This
is very handy function for introducing a short time delays into
programs. It helps buffer the differing time scales of humans and
micro-controllers — seconds for humans and microseconds for micro-
controllers. It is easy use — simply pass the number of milliseconds to
delay. (1000 ms = 1 s.) The programs essentially “pauses” for that
amount of time. Try changing the delay. See how fast you make the
LED blink and still see it as blinking.

Timing

EE 285 Arduino – timing – 2

In many of the programs that you might develop, you might be able to
use the delay function. However, it has a major flaw — the processor
cannot do anything else while the delay function is operating.

The delay function is simply a while loop where it there is nothing
happening inside the loop.

Recall that a micro-controller program is a continuous loop of checking
current operating conditions responding to those when appropriate.
Blink1 program, the loop takes slightly more than 2 seconds. For
99.9% of that time, the program is stuck inside the delay loop, and
nothing else can happen.

EE 285 Arduino – timing – 3

A better approach might be use a timer or stopwatch approach.

1. Note the time when something happened, for example, when he
LED turned on.

2. Let the program run through its loop in the usual fashion. Each
time through the loop, note the current time.

3. Compare the elapsed time (difference between the current time
and the start time) to the predefined time that the LED should be
turned on.

4. When the elapsed time becomes equal to or greater than the “on”
time, make the change — turn the LED off. Note the time at
which the LED turns off.

5. Repeat the whole cycle to determine when to turn the LED back
on.

EE 285 Arduino – timing – 4

millis()
The key to this slightly different approach is the function millis().
(Again, see the description in the language reference.) The function
returns the number of milliseconds that the current program has been
running since it started. The result is stored in a variable of type unsigned
long.

unsigned long currentTime;

currentTime = millis();

You can use millis() to note the time when a process started. (“I put the
turkey in the oven at noon.”) The use millis() to check the current time
occasionally — maybe once per loop — and determine the elapsed
time. (Look at your watch from time to time.) When the elapsed time is
“long enough”, do whatever needs to be done. (“My watch says that it
is 3:00 p.m. Three hours is long enough to cook the turkey, so I’ll take it
out.”)

This approach requires more variable declarations and some if — else
statements, but it gives much more flexibility to do other things within
the program.

EE 285 Arduino – timing – 5

A subtlety in using millis()

The millis() function returns a value in the form of an unsigned long
integer, meaning that cannot have a negative value. (See the language
reference.) This is fine for the actual number of milliseconds that the
processor returns, since it starts at zero and counts up. However, if you are
doing any math (subtraction in particular) with with unsigned longs, it might
be possible to have a result that should be negative, but can’t be because it is
an unsigned long. (Some value will result, but it will be wrong)

In using unsigned longs, you must be careful. Either you need to check
before doing any subtractions to make sure that negative values won’t occur,
or you can first convert them to regular longs, which do have a sign and
won’t have any math difficulties.

You can use regular C typecasting nomenclature. In addition, Arduino does
provide a typecast (or conversion) functions. (See the language reference.)
For example, if timeNow is defined as a long integer, the program line

 timeNow = long(millis());

will take the unsigned long returned by millis(), converted it to signed
long, and assign it to the variable timeNow.

EE 285 Arduino – timing – 6

Blink one LED, using better timing

More code, but
flexible is the
program will do more
than just blinking
LEDs.

The LED will blink
in an identical
fashion to the earlier
blink program.

EE 285 Arduino – timing –

Now we can add second
LED, which can have its
own timer and blink at
its own rate. Here is the
set up portion of a
program that will blink a
red LED at 0.5 Hz and a
greed LED at 1 Hz.

Blink two LEDs

Basically, everything that
happened in the single-
LED program is doubled
here. It gets big in a
hurry.

EE 285 Arduino – timing – 8

And here is the loop portion of that program.

EE 285 Arduino – timing – 9

Here is a very boring movie of the resulting program in action.

EE 285 Arduino – timing – 10

Adding more LEDs is straight-forward conceptually, but the program is
getting rather long and repetitive. Let’s make use of what we have
learned previously and use structs, arrays, and loops.

1. Make a struct that with members that contain all of the info about the
LED — pin number, on/off start, start time, on and off times.

2. Make an array of the structs for all of the LEDs we might want to
include.

3. Use a loop inside of the setup section to initialize all of the
information relating to the various.

4. Use a loop inside the loop section to check times and turn LEDs on
and off.

EE 285 Arduino – timing – 11

1. Define a struct that has all info pertinent to each individual LED: pin
number, on and off times, start time, and on/off status. Everything
relating to time is defined as a long. (Not unsigned long.)

2. For this example, we will use 4 LEDS (red, yellow, green, blue)

3. An integer for counting.

4. A long for the currentTime, used at various points in the program.

5. An array of 4 of the structs.

Variables and
definitions.

EE 285 Arduino – timing – 12

Set up.

1. Grab the current time.

2. Everything is initialized inside a loop.

3. We will use digital pins 2 thru 5.

4. On time for all diodes is 0.5 s. Off time is 1.5 s.

5. Initially, all diodes are off. all The start time of the diodes will
staggered so that they will come on in sequence. Of course, this can
be changed to whatever sort of pattern you like.

EE 285 Arduino – timing – 13

The loop.

Inside the loop, the program is much the same as the previous examples.
The current time at the beginning of each loop is saved. Each diode is
checked in sequence — if it is on and been on long enough, it is turned
off and its individual timer is re-started. If it is off and been off long
enough, it is turned on with the timer being re-started.

EE 285 Arduino – timing – 14

Four LEDs — the movie.

