
EE 285 2D-arrays – 1

two-dimensional arrays
Oftentimes, there are advantages to defining an array of variables using a
“two-dimensional” arrangement. A two-dimensional array could be
considered to have “rows” and “columns”. The declaration of a two-
dimensional array is extension of the declaration for a 1-D (linear) array.
The first dimension is the “row” and the second is the “column”.

int array2D[3][3]; \\A “3x3” array of integers

To access a particular array element, just use the appropriate index
values. For example: array2D[1][2] = 17;

array2D[0][0] array2D[0][1] array2D[0][2]

array2D[1][0] array2D[1][1] array2D[1][2]

array2D[2][0] array2D[2][1] array2D[2][2]

EE 285 2D-arrays – 2

address array element

00000 array2D[0][0]

00001 array2D[0][1]

00010 array2D[0][2]

00011 array2D[1][0]

00100 array2D[1][1]

00101 array2D[1][2]

00110 array2D[2][0]

00111 array2D[2][1]

01000 array2D[2][2]

01001

01010

01011

However, in memory, the array is not stored in a 2-D fashion. The
elements are still in a linear arrangement, with the first row stored first,
followed by the second row, then the third row, etc.

When accessing the variable using the array name, the distinction is not
important. It will be important to understand this arrangement when we
try to access using memory location. (pointers)

The 2D nature of the array
arrangement leads naturally to
nested loops.

EE 285 2D-arrays – 3

The array elements can be filled or changed using the usual assignment
statements within the program. The array can also be initialized at the
time that it is defined.

int array2D[3][3] = { {1,2,3}, {4,5,6}, {7,8,9} };

Or the statement can be spread over multiple lines to make the two-
dimensional nature of the array more obvious.

int array2D[3][3] = {

 {1,2,3},

 {4,5,6},

 {7,8,9} };

Higher dimensionality is possible.

For example: int array3D[3][3][3];

However, memory requirements expand rapidly, and keeping track of the
elements becomes complicated. Generally, stick to 1-D or 2-D arrays
unless a particular problem would benefit from a higher dimension.

EE 285 2D-arrays – 4

Example program
with 2-D arrays.

1) Fill a 5x5 array
with random
values.

2) Print the values.

3) Calculate
average.

4) Calculate
standard
deviation

Code file is on the
GitHub.

EE 285 2D-arrays – 5

Example output.

EE 285 2D-arrays – 6

Code file is on the GitHub.

EE 285 2D-arrays – 7

Example with [b] = unity matrix.

Example with [b] = negative of unity
matrix.

Example with [b] = [a].

