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Diffusion shows up in a number of different circumstances::

• Heat through a solid material

• Odors traveling through the air

• Tea moving from a tea bag into the surrounding hot water

• An ink stain moving through a piece of cloth

• Injected electrons or holes diffusing from the edge of depletion region in 
the neutral regions of a p-n diode

• Impurity atoms moving in a semiconductor lattice

Diffusion is the “smoothing out” that occurs in any situation where a high 
concentration of particles exists in one place and the particles can undergo 
random motion. The natural tendency is for particles to move towards regions 
of lower concentration.

Diffusion of dopants in silicon
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Basically, Fick’s law states that if particles in some collection can 
move (i.e. D ≠ 0), they will move in a way that tends to even out the 
distribution.

The idea of particle movement created by non-uniformities can be 
expressed mathematically in the form of Fick’s First Law, which relates 
particle flux to concentration gradients:

where D is the diffusion coefficient or diffusivity, with units of m2/s (or 
cm2/s).

Fick’s law

F = �'�1
�[
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To get to the diffusion equation, we 
must combine Fick’s law with a 
basic continuity relation.

Consider a rectangular volume as shown above.  Suppose that particles 
are moving through the box as indicated by the incoming and outgoing 
fluxes.  If the concentration of particles within the box is changing with 
time, it must happen because there is a difference in the fluxes coming 
in and going out.

x x + ∆x

flux in
flux out

Ly

Lz

Continuity relation

N - concentration of particles

N(LyLz∆x) - number of particles in 
the box

∆N - change in concentration within a given time ∆t

∆N(LyLz∆x) - change in number of particles in the box in the time span ∆t.
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If particles are not created or destroyed within the box, then any 
change in the number must be due to particles moving in and out.  If 
the flux in is higher than the flux out, then number inside increases.  If 
the flux outward is higher than the flux inward, then the number inside 
decreases.

number of particles entering the box at x within the time span ∆t

number of particles leaving the box at x+∆x within the time span ∆t

Keeping track of the change in the concentration in the box, ∆N, 
during some time interval ∆t:

�1/\/]�[ = F ([) /\/]�W � F ([ + �[) /\/]�W

= F ([) /\/]�W

= F ([ + �[) /\/]�W
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This type of continuity relation shows up in many different physical 
situations besides particle diffusion, including heat flow, 
electromagnetics and quantum mechanics.

and then taking the limit, we obtain the continuity relation

Rearranging

�1
�W = �F ([ + �[) � F ([)
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This is the general diffusion equation.  It is a partial differential 
equation for N(x,t).  To find a particular solution, we will need to 
specify an initial condition, N(x,t=0), and two boundary conditions like 
N(x=0, t) and N(x=5µm, t), for example.

The above form of the diffusion equation is the most general, allowing 
for the possibility that D is a function of position.  (D may be a function 
of position implicitly by being a function of concentration explicitly.)  
Of course, we also expect D to have an Arrhenius-type dependence on 
temperature.

Inserting Fick’s first equation into the continuity relation, we obtain 
Fick’s second law:

Fick’s second law - the diffusion equation
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If we assume that D does not depend on position, then we can write a 
slightly simpler form of the diffusion equation:

There are relatively straight-forward analytic solutions to the simpler 
form of the diffusion equation.  However, we must note that the 
approximation used — that D is not a function of concentration — is 
not always valid.  If so, then the analytic solutions obtained from the 
above equation may not even be good approximations.  Some of the 
dopants that diffuse in silicon do not fall into the simple category.  For 
example, boron can described reasonably well with the simple theory, 
but phosphorus cannot.

Lastly, we should note the diffusion can occur in all three dimensions, 
so the general 3-D form of the simple diffusion eq. is

�1
�W = '��1

�[�
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The general approach to using diffusion for getting dopants into a  
semiconductor crystal is to introduce a large amount of the dopant 
material at the surface of a wafer (create a concentration gradient) and 
then turn up the temperature (increase D to a reasonable value) and let 
nature take its course.

We can treat the problem in a 1-D fashion.  Also, we generally assume 
that initially there is no dopant within the bulk of the wafer [i.e. N(x≠0, 
t=0) = 0] and the wafer is so thick that no dopant will ever diffuse to 
the back surface (i.e. that the wafer is effectively infinitely thick).

x = 0

x

Simplified geometry
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One particular instance of this basic approach is the constant-source 
diffusion, in which a source of the dopant is applied to the surface and 
we assume that this has the effect of holding the surface concentration 
at some high, constant value.  The initial and boundary conditions are:

The solution to the simple diffusion equation with these conditions is in 
the form of the error function, which is well known in the field of 
statistics, but it is a bit unwieldy.

(surface concentration is held constant)

(no dopant in the wafer before the diffusion)

(nothing gets to backside)

Constant-source diffusion

1 ([ > �, W = �) = �

1 ([ = �, W) = 1V
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HUI (X) =
��
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The error function is the integral of a gaussian.  As such, there is no 
simple form of the expression,

We are forced to deal with the messiness of the integral form.  Generally, we 
use a table of values or numerical means.  (Excel or Matlab both can be used 
to calculate values for erf(u).  Note that erf(0) = 0 and erf(1) = 1, so we use 
these that the error function does satisfy the boundary conditions of the 
constant source diffusion.

0 0.5 1 1.5 2
u

N
o

NsPlot of an erf-function diffusion
profile.

Note that the plot is semi-log, 
as is the custom with the 
dependent variable ranges over 
several orders of magnitude.
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The quantity Dt determines the shape of the profile.  The units of Dt are m2.  
(Dt)1/2 has dimension of length, and it represents the characteristic scale of the 
diffusion.  If (Dt)1/2 is small, the diffusion is shallow, and if (Dt)1/2 is big the 
diffusion is deeper.

Of course, (Dt)1/2 is determined by the temperature and time of the diffusion. 
So a diffusion can be characterized in terms of a time and a temperature.

NsNs
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Dose

Clearly, the units of dose are m–2 (or cm–2 or µm–2 ,etc.)  Physically, it 
means that, if you mapped out a square on the surface of the wafer and 
then stood within the square on the surface and looked down, the dose 
would represent all of the dopant that you could see below your feet 
and within the square, irrespective of distance from the surface.

Surprisingly, the dose of a constant-source diffusion has a simple 
analytic form, even though the error function itself is unfriendly.

We can define a quantity called the dose, which is the total amount of 
a dopant diffused into a wafer.  Mathematically,
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Solid-solubility limit

In principle, the surface concentration that shows up in the diffusion 
expression could be controlled by changing the flow of a gaseous 
source of the dopant.  (More about this later.)

In practice, however, Ns will be determined by the “solid solubility 
limit” of the dopant in the silicon.  This is the thermodynamic limit of 
the amount of dopant that can be held by the silicon.  Trying to shove 
in more dopant would require a phase change of some sort.  This 
approach works because we use a process that deposits a glassy layer 
of dopant on the surface of the wafer.  The glassy layer provides an 
essentially infinite source of dopant available for diffusion. This is how 
we will do diffusion in EE 432/532 lab.

For some of the dopants, the amount of electrically active dopant is 
less than the solubility limit.  For example, at 1000°C, the solubility 
limit of As is about 1021 cm–3.  However, less than half (about 4x 1020 
cm–3 of the available As donors are providing free electrons.
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800°C 900°C 1000°C 1100°C 1200°C

Boron 7.00x1019 1.20x1020 2.00x1020 2.70x1020 2.70x1020

Phosphorus 7.00x1020 1.20x1021 1.30x1021 1.50x1021

Arsenic 2.00x1021 2.00x1021

Antimony 1.00x1020 1.00x1020 9.00x1020

All values in cm–3.

(Values taken from “Silicon VLSI Technology” by Plummer, Deal, & Griffin, Fig. 7-4, page 376.)

Solid-solubility limits in silicon
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A second important diffusion configuration is the constant-dose 
diffusion.  As the name implies, a constant dose of dopant is 
introduced into the semiconductor from some source.  The source is 
removed and then diffusion proceeds with a fixed amount of dopant 
available.  Generally, we assume that initial dose is located exactly at 
the surface of the wafer.

The other boundary condition and the initial condition are identical to 
the constant-source case:

The constant-dose boundary condition is

(no dopant in the wafer prior to diffusion)

(nothing gets to backside)

Constant-dose diffusion

1 ([ > �, W = �) = �

1 ([ � �, W) = �

4 =
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Since there is a fixed dose of dopant, as more atoms move deeper into 
the wafer, the surface concentration must decrease.  The expression for 
N(0) confirms that expectation – as Dt increases, the surface 
concentration decreases.

The diffusion equation solution under these conditions is a Gaussian 
function:

The surface concentration for the Gaussian profile is

Again, we see that the Dt-product determines the shape of the profile.  
With a bigger Dt (hotter or longer diffusion), more dopant moves 
deeper into the wafer.

1 (�, W) =
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A graph comparing constant-dose (Gaussian) diffusion with differing 
values of Dt shows the basic behavior.
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If the time is kept short and the temperature kept low, (so that the Dt-
product is small), none of the dopant will have diffused far from the 
surface.  As an approximation, we can assume that all of the dopant is 
right at the surface.

Then we can remove the dopant source (thus fixing the dose) and 
follow up with constant-dose diffusion step.

A constant-dose diffusion seems to provide more flexibility since we 
would be able to design the diffusion to get a particular surface 
concentration.  But that begs the question of how to get the initial dose 
at the surface of the wafer.  One method would be to use ion 
implantation (to be discussed later).  Another approach is to use a 
constant-source (error function) diffusion to introduce the dose.  We 
know that the dose of a constant-source diffusion is given by

Two-step diffusion
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Inserting the dose from the consant-source step into the equation for 
the Gaussian diffusion profile, we obtain the two-step diffusion 
equation.

With the two-step process, we can control all aspects of the 
diffusion.

where D1t1 refers to the constant-source step and D2t2 are the 
parameters for the constant-dose step.
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When we perform a diffusion, the new 
dopant is generally diffusing into a region 
where some dopant (probably of the 
opposite type) already exists.  The old 
dopant may be the constant background of 
the starting wafer or it may be from a 
previous diffusion. So the new dopant is 
probably compensating the old dopant in 
the regions near the surface.  Farther down, 
there will be a junction. In general, we will 
want to know where that junction occurs.  
In designing a diffusion, we may want to 
design for a specific junction location.

Junction depth
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Doing this for the constant-source (error function) diffusion:

Mathematically, we can determine the junction depth is straight-
forward manner.  If the junction is formed with the background doping 
of the wafer, simply set the doping the profile equal to the background 
doping at the junction,

and solve for xj.
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And for the constant-dose (Gaussian) diffusion:

1% =
4�
�'W

exp

�
�

[�M
�'W

�

[M =

�

�'W ln
�

4
1%

�
�'W

�

=

�

�'W ln
�
1 (�)
1%

�

Note that the two-step diffusion profile is a special of a constant-dose 
diffusion.

If the junction is formed by diffusion profiles, the same idea applies, 
except that you will not use the constant background doping. Instead,
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where N1(x) and N2(x) are both doping profiles.  (See the homework.)
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Do(cm2/s) EA (eV)

boron 1.0 3.50

phosphorus 4.70 3.68

arsenic 9.17 3.99

antimony 4.58 3.88

indium 1.20 3.50

These diffusion coefficients should be viewed as being very 
approximate.  (More on this later.) 

Diffusion coefficients
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1.Try to think of other examples of diffusion in everyday life.

2.Flux implies a direction of flow, so properly it should be treated as a 
vector quantity.  Determine the vector form of Fick’s law.

3.Similarly, write the vector form the continuity relation.

4.Suppose that for some reason, the diffusion coefficient depended on 
position, such that D(x)=Doexp(–bx), where Do and b are constants.  
Starting with the general diffusion equation on slide 5 find the 
diffusion equation under this particular condition.

5.Confirm the 3-D (vector) form of the diffusion equation.

6.Confirm the erfc-type function solution by inserting it into the 
diffusion equation and showing that it works.  (Or better yet, look up 
the details of this particular solution and work through it yourself.)

study questions
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7.Confirm the Gaussian function solution by inserting into the diffusion 
equation and showing that it works.  (Or better yet, look up the details 
of this particular solution and work through it yourself.)

8.Confirm the two junction depth equations on slide 22.

9.Do a variety of the web-based diffusion problems.

study questions


