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Series and parallel combinations
One of the simplest and most useful things we can do in a circuit is to 
reduce the complexity by combining similar elements that have series or 
parallel connections. Resistors, voltage sources, and current sources can 
all be combined and replaced with equivalents in the right 
circumstances. 

We start with resistors. In many situations, we can reduce complex 
resistor networks down to a few, or even a single, equivalent resistance. 
As always, the exact approach depends on what we want to know about 
the circuit, but resistor reduction is a tool that we will use over and over.
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To set the stage, consider the 
circuit at right. We might like to 
determine the power from the 
source, which requires knowing 
the current. Of course, we don’t 
know the source current 
initially — we must find it by 
finding the current flowing in 
the resistors.
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In the circuit, iS = iR1, so our goal 
is to find that. Set to work with 
Kirchoff’s Laws. Since we don’t 
know anything at the outset, we 
will have to come up with enough 
equations to have a simultaneous 
set that can be solved. 

KCL: iR1 = iR2 + iR3 ; iR3 = iR4 = iR5. 

KVL: VS – vR1 – vR2 = 0 ; vR2 – vR3 – vR4 – vR5 = 0. 

Using Ohm’s Law to write voltages in terms of currents and then fiddling 
around to reduce the equations to a manageable set, we arrive at three 
equations relating, iR1, iR2, and iR3. (We are skipping all the details here 
— there will be plenty of time for developing simultaneous equations 
later.) 

iR1 = iR2 + iR3

VS – iR1R1– iR2R2 = 0 

iR2R2 – iR1(R3 + R4 + R5) = 0.
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Three equations, three unknowns. 

iR1 = iR2 + iR3

VS – iR1R1– iR2R2 = 0 

iR2R2 – iR1(R3 + R4 + R5) = 0. 

Soon enough, we will be adept at handling problems like this. For now, 
we will put our trust in Wolfram-Alpha (or something similar), and let it 
grind out the answers. 

iR1 = 5.02 mA.

iR2 = 2.26 mA.

iR3 = 2.76 mA.

Finally, iR1 = iS and the power being delivered by the source is 
PS = VS·iS = (10 V)(5.02 mA) = 50.2 mW.

However, this business of finding three equations in three unknowns 
and solving all that seems a lot of work to determine one number in a 
relatively simple circuit. Is there a simpler way? Of course, the answer is 
“yes”.
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Equivalent Resistance
The original circuit was a single 
source with a network of resistors 
attached. The resistor currents are 
related to the source current by KCL. 
The resistor voltages are related to the 
source voltage by KVL. The resistor 
currents are related to the resistor 
voltages by Ohm’s Law.  

Then it seems reasonable that the 
source voltage and source current 
should be related by Ohm’s Law, 
meaning that there must be some 
equivalent resistance that represents 
the cumulative effect of resistors in 
the network: 

Req =
VS

iS
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Equivalent Resistance
The question is how to find the equivalent resistance of the network.  
The general approach would be to apply a “test generator” to the 
network. A test generator is a voltage or current source with a value that 
we can choose. For example, if we apply a test voltage source with 
value Vt, as shown below, then we can calculate the current, it, that 
flows into the network due to the applied source.

R3

R4
R5

R2

R1

+
–Vt

it
The equivalent resistance 

would then be  .Req =
Vt

it

In lab we could something similar by building the circuit, applying a 
test voltage, and measuring the result current. In lab, this process goes 
by a different name — it’s called “using an ohmmeter”.



G. Tuttle – 2022 series/parallel combinations – 6

Of course, we have already done 
this. The earlier calculation is 
identical to this test generator idea 
if we set Vt = 10 V. In the 
calculation, we found the current to 
be 5.02 mA. Then the equivalent 
resistance is  

Req = 10 V /  5.02 mA = 1.99 kΩ.

R3

R4
R5

R2

R1

+
–Vt

it

However, this seems a bit pointless, because finding equivalent resistance 
using a test generator was as much work as finding the source current directly. 
In fact, it took one extra step to find the equivalent resistance. 

But fear not. We can start with simple relationships for the equivalent 
resistance of series and parallel combinations. Then we can use series and 
parallel combinations to break down complex resistor networks and analyze 
them in a piecemeal fashion. We will see that the equivalent resistance idea is 
simple to implement in most cases and can be a powerful method for 
analyzing circuits. We will use it repeatedly as move through EE 201 and 230.
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Series combination

Apply test voltage. 
Define voltages 
and currents.

By KCL:   iR1 = iR2 = iR3 = it    Expected, since they are in series.

By KVL:    Vt – vR1 – vR2 – vR3 = 0.

Resistors are in series, meaning that the same current flows in all.

Use Ohm’s law to write voltages in terms of currents.

Vt − iR1R1 − iR2R2 − iR3R3 = 0

Vt − itR1 − itR2 − itR3 = it (R1 + R2 + R3) = 0

Req =
Vt

it
= R1 + R2 + R3

R1

R2
R3

Req
+
–Vt

–+ vR1

– +vR3

–

+
vR2

iR1

iR3
iR2

it
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The equivalent resistance of resistors in series is simply the sum of the 
individual resistance.

Series combination

Req =
N

∑
m=1

Rm

The calculation is easy. 

The equivalent resistance is always bigger than any of the individual 
resistors, Req > Rm. 

In fact, if one resistor is much much bigger than the rest, the equivalent 
resistance will be approximately equal to the one big resistor. For 
example, in the three-resistor string on the previous page, if R1 = 10 kΩ, 
R2 = 100 Ω, and R3 = 1 Ω, then Req = 10.101 kΩ ≈ 10 kΩ.

This is why we can ignore the resistance of wires in most cases. 
Consider a 1-kΩ resistor with its two leads. If the resistor body has 
RB = 1 kΩ and the wires are each Rw ≈ 0.01 Ω, the series equivalent 
resistance of the whole is resistor is then 1.00002 kΩ. In almost all 
practical cases, the wire resistance is negligible.
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Parallel combination

Apply the test voltage. 
Define voltages and currents.

By KVL:  vt = vR1 = vR2  = vR3.   Expected, since they are all in parallel

By KCL:  it = iR1 + iR2  + iR3.      Use Ohm’s law to write iR in terms of vR.

it =
vR1
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+

vR2
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+

vR3

R3

it =
vt
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+
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R2
+
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R3
= vt ( 1
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+

1
R2

+
1
R3 )

1
Req

=
it
vt

=
1
R1

+
1
R2

+
1
R3

R1 R2 R3Req
–

+
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+
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–

+
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+
–Vt

it

Resistors in parallel ––  they all have the same voltage across.
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The equivalent resistance will always be smaller than the resistance of 
any individual branch: Req < Rm for all m. 

If one resistor is much smaller than all other resistors in the parallel 
combination, (so that its inverse is much bigger), then the equivalent 
resistance will be approximately equal to that of the smallest resistor. 
For example, if the three parallel resistors from the previous page had 
values of R1 = 10 kΩ (1/R1 = 10–4 Ω–1), R2 = 100 Ω (1/R2 = 10–2 Ω–1), and 
R3 = 1 Ω (1/R3 = 1 Ω–1), then Req = 0.99 Ω ≈ 1 Ω (1/Req = 1.0101 Ω–1).

In fact, if we place a wire (Rw ≈ 0) in parallel with other resistors, the 
equivalent resistance approximately zero — the wire has shorted out 
everything else.

1
Req

=
N

∑
m=1

1
Rm

Parallel combination
The inverse of the equivalent resistance is equal to the sum of the 
inverses of all the resistance in the parallel combination.
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Since the calculation for parallel resistors, with the need for inverses, can 
be a bit messy, there are some short-cuts that can used for special cases. 

If there are only two resistors in parallel: 

  (Product over sum, which might be easier to compute.) 

Two identical resistors, R1 = R2 = R: 

   (e.g. Two 1-kΩ resistors in parallel gives 0.5 kΩ.) 

N identical resistors in parallel (extending the idea): 

. 

If one resistor is much smaller than the rest (R1 << Rm) (to re-emphasize) 

   If R1 = 0 (short circuit), then  Req = 0.

1
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+
1
R2

=
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+

R1

R1R2
=

R1 + R2

R1R2

Req =
R1R2

R1 + R2

Req =
R2

R + R
=

R
2

Req =
1

1
R + 1

R + … + 1
R

=
R
N

Req =
1

1
R1

+ 1
R2

+ … + 1
RN

≈ R1
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Breaking down networks using series and parallel
R3

R4
R5

Req R2

R1But not all circuits are simple 
combinations of series or parallel 
resistors. The initial example circuit 
clearly has some things that are in 
series and some elements that have 
a parallel-type connection.

The trick is to break the circuit into smaller pieces that are purely series 
or parallel, find the equivalent of that piece and insert that back into the 
original circuit, which will now be simpler. Then find another series or 
parallel combination that can be simplified. Through a sequence of 
steps, it may be possible to reduce even complex combinations to a 
single equivalent resistance.

For the circuit above, we can start by 
recognizing that the R3 - R4 - R5 series 
combination can be reduced: 
R345 = R3 + R4 + R5 = 1.8 kΩ.

R3

R4
R5

R345

1 kΩ

2.2 kΩ

330 Ω

470 Ω
1 kΩ

330 Ω

470 Ω
1 kΩ
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R345Req R2

R1

Insert the single R345 resistor back 
into the original circuit. Now, quite 
obviously, R2 is in parallel with R345.

R345R2345 R2
Calculate the equivalent resistance of 
the parallel combination. Using the 
two-resistor formula:

R2345 =
R2 ⋅ R345

R2 + R345
= (2.2 kΩ) (1.8 kΩ)

(2.2 kΩ) + (1.8 kΩ)
= 990 Ω

Insert the R2345 equivalent back into 
what is left of the original circuit. 
Now, we easily calculate Req as the 
series combined of R1 and R2345.

R2345Req

R1

Req = R1 + R2345 = 1 kΩ + 0.99 kΩ = 1.99 kΩ.

1 kΩ

2.2 kΩ 1.8 kΩ

2.2 kΩ 1.8 kΩ

1 kΩ

0.99 kΩ

Calculating source power is now trivial.
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The equivalent resistance “method”
So we have a method for trying to find equivalent resistances without 
having to resort to messy combinations of Kirchoff’s Laws.

1. Identify the pair of nodes 
between which we want to find 
equivalent resistance. Peer into it 
with “Ohm’s eye”. Ohm’s eye

2. Starting at the opposite end of 
the network, identify series and 
parallel combinations that can be 
reduced using the simple formulas.

R3
R4

R5

R2
R1

R3
R4

R5

R2
R1

R345

R345R2

R1
R2345

3. Repeat with another series or 
parallel combination to further 
simplify the circuit.
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4. Continue the simplification 
process, one series or parallel 
combination at a time, until the 
network is reduced to a single 
resistor. (Or until the remaining 
network is trivial.)

R2345

R1 Req

It is not necessary to insert numbers at each step — we could express 
the results using symbols and then insert numbers at the end, if needed. 
For the example, the equivalent resistance expressed in symbols:

Req = R1 + R2345 = R1 +
R2 ⋅ R345

R2 + R345
= R1 +

R2 ⋅ (R3 + R4 + R5)
R2 + R3 + R4 + R5

With practice, many circuits can be simplified by inspection (i.e. in our 
heads). We might even be able to calculate the values in our heads. 

Not all resistive networks can be reduced using series / parallel 
combinations. Consider the bridge circuit that was one of the Kirchoff’s 
Laws practice problems — the bridging resistor is not in series or 
parallel with any other resistors and so there are no simplifications.
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Example 1

Find the equivalent 
resistance looking into 
the indicated port of the 
“ladder network” shown. 

R3
R4Req R2

R1 R5
R6

1. Starting at the “far end”, 
we see that R5 and R6 are 
in series.

330 Ω

680 Ω

330 Ω 330 Ω

680 Ω 680 Ω

R3
R4R2

R1
R56

330 Ω

680 Ω

330 Ω

680 Ω 1010 Ω

2. R4 is in parallel with R56.  
R456 = (1/R4 + 1/R56 )–1 = 407 Ω.

R3
R456R2

R1

330 Ω

680 Ω

330 Ω

407 Ω

R56 = R5 + R6 = 1010 Ω.
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Example 1 (cont.)

3. R3 and R456 are in series. 

4. R2 is in parallel with R3456. 

680 Ω 737 Ω

330 Ω

330 Ω

354 Ω

5. Finally, Req is the series 
combination of R1 and R23456.  
Req = 330 Ω + 354 Ω = 684 Ω.

R3456R2
R1

R3456 = R3 + R456 = 1010 Ω.

R23456 =
1

1
R2

+ 1
R3456

= 354 Ω

R23456
R1

Req

Req 684 Ω

(OK — the 
subscripting 
thing is getting a 
bit ridiculous.)
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Example 2
Find the equivalent resistance looking into the indicated port of the 
circuit shown below.

33 Ω

68 Ω

18 Ω

82 Ω

47 Ω

100 Ω

68 Ω

68 Ω

R2

R1

R4

R3

R5

R6

R9

R10

R7 R8Req 39 Ω220 Ω

At first glance, this looks very difficult, but it’s not so bad. We can pick 
it apart piece by piece. Start by noting that R7 is in parallel with R8.

R78 =
1

1
R7

+ 1
R8

= 33.1 Ω
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Similarly, R5 is in parallel with R6 and R9 is in parallel with R10.

R56 =
1

1
R5

+ 1
R6

= 32.0 Ω R910 =
1

1
R9

+ 1
R10

= 34 Ω

R2

R1

R4

R3

R56

R910

R78
33 Ω

68 Ω

18 Ω

82 Ω

32 Ω

34 Ω

33 Ω

Next, we note that there are several series combinations 

R1 in series with R2 :  

R3 in series with R4 :  

R56, R78, and R910 all in series :  

Ra = R1 + R2 = 101 Ω
Rb = R3 + R4 = 100 Ω

Rc = R56 + R78 + R910 = 99 Ω

Example 2 (cont.)
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Finally, we see that the equivalent resistance is just the parallel 
combination of Ra, Rb, and Rc.

Example 2 (cont.)

Ra Rb RcReq

Req =
1

1
Ra

+ 1
Rb

+ 1
Rc

= 33.3 Ω

101 Ω 100 Ω 99 Ω

Not that bad.
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Example 3
Find the equivalent resistance at the indicated port in the circuit below.

R3

R4Req R2

R1 R5

There are a couple of interesting things going on here. First, we see some 
“diagonal” resistors. Secondly, we see a “dangling” resistor, R5, which is not 
connected to anything on one side. 

First, the diagonal resistors are essentially an optical illusion — current and 
voltage do not care about the spatial orientation of the components. We can 
re-draw the circuit in the more familiar grid-like arrangement, with no change 
in how the circuit behaves.

R3
R4Req R2

R1 R5

1 kΩ

1.5 kΩ

470 Ω10 kΩ

5.6 kΩ
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Example 3 (cont.)
Now, about the dangling resistor. Since the right-hand side of R5 is 
“open circuited”, we can view R5 as being in series with a resistor with 
value approaching infinity. (An open circuit is essentially a resistor with 
R → ∞.) A series combination of any finite resistor infinity is also 
infinity. (Mathematicians are cringing now.) So essentially, the dangling 
R5 is the same as an open circuit — in principle, we could have left it 
off entirely with no change in equivalent resistance. (In the future, we 
will see a number of situations where there are dangling components 
like this, and we need to know how to handle them.)

R5
Roc + R5

(→ ∞)

R5
Roc

(→ ∞)
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Example 3 (cont.)
Now that we straightened out the diagonals and trimmed off the 
dangler, the circuit looks familiar and simple

And the calculation is straight-forward: 

R34 = R3 + R4 = 15.6 kΩ 

Req = R1 + R234 = 2.37 kΩ

R234 =
1

1
R2

+ 1
R34

= 1.37 kΩ

R3

R4Req R2

R1
1 kΩ

1.5 kΩ

10 kΩ

5.6 kΩ
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Example 3a
Same circuit, but now find the equivalent resistance looking from the 
other end.

R3

R4
ReqR2

R1 R5

1 kΩ

1.5 kΩ

470 Ω10 kΩ

5.6 kΩ

The previous comments about 
the diagonals and the 
dangling resistor apply, except 
that now R1 is the dangler.

R3
R4R2

R5

We start at the “far end” and work towards the eyeball. 

R23 = R2 + R3 = 11.5 kΩ 

Req = R5 + R234 = 4.24 kΩ

R234 =
1

1
R23

+ 1
R4

= 3.77 kΩ
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Voltage sources in series.
Consider the simple series circuit at right. We can 
write a KVL equation around the loop: 

VS1 – vR1 – VS2 – vR2 = 0. 

Addition and subtraction are commutative, so we 
can re-arrange the ordering in the equation. 

VS1 – VS2 – vR1 – vR2 = 0. 

This would imply that we can re-order the 
components in the circuit. The re-ordered circuit is 
must behave the same as the top circuit. 

Now we can use Ohm’s Law to write  

VS1 – VS2 – iR1·R1 – iR2·R2 = 0. 

Since the same current flows in all components in 
the series string, iS1 = iS2 = iR1 = iR2 = iS. 

VS1 – VS2 – iS (R1 + R2) = 0. 

We know that we can combine series resistors. It 
appears that we can also combine series voltage 
sources: VS12 – iS R12 = 0.

+
–VS1

R1

+
– VS2

R2

–+ vR1

– +vR2

+
–VS1

+ –

R2
– +vR2

R1
–

+
vR1

VS2

+
–VS12 R12

VS12 = VS1 − VS2
R12 = R1 + R2
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Voltage sources in series.
The little exercise on the previous slide show us important ideas about 
series connections. 

1. The ordering of components in the series string is irrelevant — we can 
re-order the voltage sources and resistors to suit our needs. 

2. Just like resistors in series, we can combine voltage sources in series 
and treat them as a single source. 

The idea of putting voltage sources in series should be familiar to most — 
in electronic gadgets it is common to connect several 1.5-V batteries in 
series to create 3-V or 4.5-V or 6-V or whatever voltage is needed to 
power a circuit. 

When combining series voltage sources, there might some uncertainty 
about whether to add or subtract the values (particularly for neophytes). 
The ambiguity can always removed by writing a proper KVL equation 
around the loop. Kirchoff will make it clear whether to add to or subtract.
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Current sources in parallel.
Consider the simple circuit at right. We can 
write a KCL equation at the top node: 

IS1 – iR1 + IS2 – iR2 = 0. 

Addition and subtraction are commutative, so 
we can re-arrange the ordering in the equation. 

IS1 + IS2 – iR1 – iR2 = 0. 

This would imply that we can re-order the 
components in the circuit. The re-ordered 
circuit must be identical to the top circuit. 

We can use Ohm’s Law to write 

IS1 + IS2 −
vR1

R1
+

vR2

R2
= 0

IS1 R1 IS2 R2
iR1 iR2

IS1 R1IS2 R2
iR1 iR2

IS12 R12

All the components have the same voltage across, vIS1 = vIS2 = vR2 = vR2 = vS, 
We know that we can combine the parallel resistors, and it appears that we 
can combine the current sources as well. 

IS1 + IS2 −
vS

R1
−

vS

R2
= 0 → IS12 −

vS

R12
= 0 IS12 = IS1 + IS2 R12 = ( 1

R1
+

1
R2 )

−1
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Current sources in parallel.
The little exercise on the previous slide show us to important ideas about 
parallel connections. 

1. The ordering of components in the parallel arrangement is irrelevant 
— we can re-order the parallel current sources and resistors to suit our 
needs. 

2. We can combine current sources in parallel and treat them as a single 
source. 

When combining parallel current sources, there is often some uncertainty 
about whether to add or subtract the values. The ambiguity can always 
removed by writing a proper KCL equation at the node where they are 
connected. Kirchoff will make it clear whether to add to or subtract.
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Example 4
Below is a conglomeration of sources and resistors. Simplify the circuit 
by combining the series and parallel components. 

22 Ω

10 Ω

33 Ω

47 Ω 15 Ω 68 Ω
12 V

6 V

1.5 V

0.5 A 0.25 A 0.75 A

Three resistors in series on the left:  RL = R1 + R2 + R3 = 65 Ω

Three sources in series on the left: VL = VS3 + VS1 – VS2 = 14.5 V

Three resistors in parallel on the right:  

Three sources in parallel on the right:  

IR = IS1 – IS2 + IS3 = 1 A.

RR = (R−1
4 + R−1

5 + R−1
6 )−1 = 9.74 Ω

+
–VL

RL

RR IR

+
–VS1

+ –

R1
+ –

IS1 IS2 IS3R4 R5 R6

R2 VS2

VS3 R3

14.5 V

65 Ω

9.7 Ω 1 A
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Voltage sources in parallel, current sources in series
From a theoretical point of view, these combinations are not allowable. They 
lead to untenable conundrums with Kirchoff’s Laws.

+
–VS1

+
–VS2

12 V 6 V

KVL: VS1 – VS2 = 6 V ≠ 0!! Yikes!

IS1
IS2

2 A
1 A

KCL: IS1 ≠ IS2 : In ≠ Out!! Yikes!

So in 201 circuits, we avoid these. However, everyone 
knows that sometimes voltage sources are connected to 
parallel — charging a battery is essentially requires 
connecting one source to another. If there were no other 
considerations, then the resistance of the wire (which we 
generally ignore in 201) comes into play.

+
–VS1

+
–VS2

Rw = small!

i =
VS1 − VS2

Rw
= BIG!

If we connect two random batteries together (or short out a battery — 
VS2 = 0), bad things may happen. A practical battery charger will have some 
means to limit current. In fact, it may actually be current source.


