
EE 201 op amps – 1

Operational amplifiers (Op amps)

Recall the basic two-port model for an 
amplifier. It has three components: 
input resistance, Ri, output resistance, 
Ro, and the open-loop voltage gain, Ao.

It is essential to specify all three parts of the model — when we attach 
an input source and an output load, the voltage developed across the 
load depends very much on Ri and Ro, as well as Ao.
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To minimize the effects of the input and output voltage dividers, we 
might try to make the input resistance be as big as possible — in the 
limit it would be open circuit — and the output resistance be as small as 
possible — in the limit it would be a short circuit.

vo = [ Ri

Ri + RS
Ao

RL

RL + Ro ] vs vo = Aovs
Ri → ∞ , Ro → 0

Operational amplifiers (op amps, for short) are a class of amps that 
come close to meeting these input and output resistance extremes.  We 
can define an ideal op amp as one having truly infinite input resistance 
and zero output resistance.  No real op amp meets these specifications, 
but typical devices come close enough that we can use the ideal as 
reasonable starting point.
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Op amps have a third distinguishing feature — a very large value for Ao.  
In the ideal case, the open-loop gain is assumed to be infinitely large!  
This would seem to cause some conceptual (and practical) difficulties, 
since then if vd = vS had any finite value, the output would go to infinity. 
The only way to keep the output from “blowing up” would be to have 
vS = 0.  This all seems a little odd.

If  then .Ao → ∞ vo → ∞
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Before we see how to handle the business of infinite gain, let’s list the 
properties of an ideal op amp. 

1. Infinite input resistance, Ri → ∞.  (An open circuit.) 

2. Zero output resistance, Ro = 0.  (A short circuit.) 

3. Infinite open-loop gain, Ao → ∞.
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In contrast to earlier circuits that we have analyzed, electronic circuits always 
have a specified node defined to be ground.  Before now, the only time we 
invoked a ground node was when using the node-voltage analysis. Then we 
would choose a node to be ground (v = 0) in order to reduce the number of 
unknowns.  An electronic circuit always requires one or more DC power 
supplies in order to energize the circuits in the chips.  The presence of the 
power supply allows us to define one connection of the supply to be the 
ground for the entire circuit. We will discuss the role of the power supplies 
later, but the idea of a single, pre-defined ground does have an immediate 
effect our op amp model.  The output voltage of most (but not all) op amps is 
defined with respect to the ground node rather than as the difference 
between two isolated output leads. 

Ground in electronic circuits

Most op amps have this 
“differential input, single-ended 
output” configuration, although 
there are some differential output 
versions.  Using the defined 
ground changes the output side of 
the model as shown.
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Single-ended output.  
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Now we are ready to tame 
the infinite-gain issue.  Of 
course, the trick is to use 
feedback.  In fact, we have 
already done it — refer back 
to the feedback notes.  In the 
circuit at right, known as a 
non-inverting amplifier, we 
have used a standard 
voltage-divider feedback 
loop together with the 
“almost ideal” op amp.

Feedback – non-inverting

In drawing the circuit, we have made use of two bits of standard schematic 
nomenclature — the triangle symbol for the amplifier and the copious use 
of ground symbols.  All the points with ground symbols form a single 
node.  We could have connected all the ground points with wires, but the 
resulting schematic would have been almost un-intelligible.  And this is a 
very simple electronic circuit.  In more involved applications (EE 230), the 
schematics will have ground symbols all over the place.
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Finally, we can get to the 
circuit analysis.  First we note 
that RS and RL are essentially 
irrelevant.  Since no current 
flows into the positive input 
terminal, there is no voltage 
drop across RS and v+ = vs.  
Since RL is connected 
directly to the dependent 
source, vo = Aovd, no matter 
what value RL may have.
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vd = v+ − vf = vs − vf

iR2 = iR1 →
vo − vf

R1
=

vf

R2
→ vf =

R1

R1 + R2
vo (Duh. It’s a 

voltage divider.)

vo = Aovd

Put it all together to write vo in terms of vs.

vo = [ Ao

1 + Ao ( R1

R1 + R2 ) ]vs It looks like a classic feedback result.
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vo = [ Ao

1 + Ao ( R1

R1 + R2 ) ]vs

Re-arranging slightly.

vo = [
R2 + R1

R1

1 + 1
Ao ( R2 + R1

R1 ) ] = Govs Go is the closed-loop gain.

If Ao is really big ( approaching infinity)

Ao → ∞ , Go →
R2 + R1

R2
= 1 +

R2

R1

Even though Ao is huge, it has essentially disappeared from the final 
result.  This is just a repeat of the feedback results seen earlier. 
We note again a key aspect of feedback by calculating v– :

v− = vf =
R1

R1 + R2
vo = ( R1

R1 + R2 ) ( R1 + R2

R1 ) vs = vs = v+

The feedback forces the difference signal to be zero: vd = v+ – v– = 0. 
The negative feedback has forced the negative input to have the same 
voltage as the positive input.  
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Here is another amplifier circuit 
using feedback. The feedback 
network is less obvious, but it is 
negative feedback since the 
output is tied back to the 
negative input. A bit of circuit 
analysis leads to the closed-
loop gain.

Feedback – inverting

iR1 = iR2 →
vs − v−

R1
=

v− − vo

R2
→ vo = −

R2

R1
vs + (1 +

R2

R1 ) v−

vo = Aovd = − Aov−

Inserting v– = – vo /Ao and re-arranging,

vo = [
−

R2

R1

1 + 1
Ao ( R2 + R1

R1 ) ] = Govs Go is the closed-loop gain.
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If Ao is really big

Ao → ∞ , Go → −
R2

R1

vo = [
−

R2

R1

1 + 1
Ao ( R2 + R1

R1 ) ] = Govs

We can calculate v– :

Once again, we see that the feedback forces the inputs to have the same 
voltage. In this case, v– = v+ = 0. This is interesting — even though v– is 
not directly connected to ground, the perfect feedback has caused it to 
have the same value as v+, which is connected to ground.  This is known 
as a virtual ground.

v− =
vo +

R2

R1
vs

1 + R2

R2

= 0
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Our observation that v– = v+ in these two examples suggests a more 
efficient means for analyzing op amp circuits. Instead of using the two-
port model with a gain of Ao, finding an expression for closed-loop gain 
that includes Ao, and then letting Ao → ∞, we can “skip the middleman” 
and assume at the outset that negative feedback will force v– = v+. Then 
we can calculate the ideal gain expression directly. Now we have two 
simple rules to use for analyzing ideal op amps: 

1. i+ = i– = 0 
2. v– = v+, when there is a negative feedback loop. 

Each “rule” derives from one aspect of the ideal op amp 

1. Ri → ∞:  no input currents. 
2. Ao → ∞: perfect feedback, v– = v+

The third aspect of the ideal op amp, Ro = 0, will come into play when we 
connect a load to the output or made make a cascaded arrangement 
where one op amp circuit follows another.

The op-amp “rules”.
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Now let’s re-examine the non-inverting 
and inverting feedback amplifier 
configurations using the op amp rules. 

Note that v+ = vs.  Write a node-voltage 
equation at the inverting input terminal.

Non-inverting amp — redux

vo − v−

R2
=

v−

R1
+ i−

vo − vs

R2
=

vs

R1

vo = (1 +
R2

R1 ) vs

Go =
vo

vS
= 1 +

R2

R1
So simple!

–
+

R2

R1

+
–vS

–

+
vo

Since we are not explicitly 
including Ao in the analysis, 
we can use a more compact 
symbol for the op amp. This 
is the standard — i.e. most 
typical — amp symbol.

Apply the op amp rules: 
i– = 0 and v– = v+ = vs.
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Same basic approach. Note that v+ = 0. 

Write a node-voltage equation at the 
inverting input terminal.

Inverting amp — redux

vs − v−

R1
=

v−vo

R2
+ i−

vs

R1
=

−vo

R2

vo = (−
R2

R1 ) vs

Go =
vo

vs
= −

R2

R1

The negative sign is what make 
this “inverting”.

–
+

R1

R2

+
–vS

–

+
vo

Apply the op amp rules: i– = 0 and v– = v+ = 0 (virtual ground)
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General approach for solving circuits with ideal op amps
In principle, any of the 201 circuit analysis techniques are viable when 
solving op-amps. 

• Because of the ground defined by the power supplies, the node-
voltage technique is almost always useful. 

• Mesh currents might be applicable, but the fact that no current flows 
in the input leads can making finding useful meshes tricky.  (Save 
mesh current for EE 303.) 

• With multiple inputs, superposition may be useful. 

• Voltage dividers are always useful.  Because no current flows in the 
input leads, we can apply voltage dividers directly to the inputs. 

• Usually, writing a node-voltage equation at the output is not useful, 
because we can’t know the output current. 

• Be careful with the idea of the virtual short (or virtual ground).  It is 
NOT a true short circuit in regards to currents. 

• Generally, write some NV equations at the inputs, set v+ = v– and see 
what happens.
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Example 1 – non-inverting
Hmmm. Try writing node-voltage 
equations at each of the inputs.

vo − v−

R2
=

v−

R1
+ i−

vs − v+

Ra
=

v+

Rb
+ i+

First, apply i+ = i– = 0:

vo − v−

R2
=

v−

R1

vs − v+

Ra
=

v+

Rb

–
+

R2

R1

+
–vS

–

+
vo

Ra

Rb

vo = (1 +
R2

R1 ) v−

v+ = ( Rb

Ra + Rb ) vs

Non-inverting amp result.

A simple voltage divider.

vo = (1 +
R2

R1 ) v− = (1 +
R2

R1 ) v+ = ( Rb

Ra + Rb ) (1 +
R2

R1 ) vs

Next  v+ = v–:

The product of two simple results.

v–

v+
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–
+

R1

–

+
vo

R2

+
–vS

Ra

Rb

Example 2 – inverting
How about this? Will it be 
the product of a voltage 
divider and an inverting 
gain?  We should proceed 
carefully — write two node 
voltage equations.

vs − vx

Ra
=

vx

Rb
+

vx − v−

R1

vx − v−

R1
=

v− − vo

R2
+ i−

Apply the op amp rules: i– = 0 and v– = v+ = 0 (virtual ground)

vs − vx

Ra
=

vx

Rb
+

vx

R1

vx

R1
=

−vo

R2

vx =
vs

1 + Ra

Rb
+ Ra

R1

vo = − ( R2

R1 ) vx

and

Inverting amp.

A voltage divider, of sorts

Put the two results together: vo =
−

R2

R1

1 + Ra

Rb
+ Ra

R1

vs

Not difficult, but not 
what we might have 
guessed at the outset.

vx

v–
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–
+

R1

R4

+
–vS

–

+
vo

R2

R3

Example 3 – inverting
Wow — messing with the feedback 
path.  Maybe this is impossible to 
solve? Nope. It’s quite easy — just 
apply the rules. Start with two 
node-voltage equations:

vx

vs − v−

R1
=

v− − vx

R2
+ i−

v− − vx

R2
=

vx

R3
+

vx − vo

R4

Same rules as the previous example : i– = 0 and v– = v+ = 0.
vs

R1
=

−vx

R2

vo = (1 +
R4

R2
+

R4

R3 ) vx
−vx

R2
=

vx

R3
+

vx − vo

R4

vx = − ( R2

R1 ) vs

Put it together: vo = − (1 +
R4

R2
+

R4

R3 ) ( R2

R1 ) vs

v–

Piece of cake.
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Non-inverting amp with 
something attached to the 
output. Find vRb in team of vs. 
A couple of node-voltage 
equations gives:

–
+

R2

R1

+
–vS

–

+
vRb

Ra

Rb

vo

vo − v−

R2
=

v−

R1
+ i−

vo − vRb

Ra
=

vRb

Rb

Apply the op amp rules to the left equation: i– = 0 and v– = v+ = vs.

and

vo − vs

R2
=

vs

R1
vo = (1 +

R2

R1 ) vs

vRb = ( Rb

Ra + Rb ) vo

Usual on-inverting amp.

A simple voltage divider.
vo − vRb

Ra
=

vRb

Rb

vo = ( Rb

Ra + Rb ) (1 +
R2

R1 ) vs

Again, the product of two 
simple results. Result is 
identical to Example 1!

Example 4 – non-inverting

v–

io =
vo − vRb

Ra
+

vo − v−

R2
This NV equation is not 
useful! We don’t know io.

vRb
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Something new — a summing 
amp.  It looks a bit like an 
inverting amp, but with some 
extra inputs.  Since there are 
multiple inputs, we cannot 
calculate a single gain for the 
circuit, be we can calculate vo as 
a function of the various inputs.

Summing amp

–
+

R2

Rf

–

+
vo

R3

+
–vS3

+
–vS2 R1

+
–vS1

i3

i2

i2

if

Node voltage at inverting input:

iR1 + iR2 + iR3 = if + i− →
vS1 − v−

R1
+

vS2 − v−

R2
+

vS3 − v−

R3
=

v− − vo

Rf
+ i−

Apply the op amp rules: i– = 0 and v– = v+ = 0 (virtual ground)

vS1

R1
+

vS2

R2
+

vS3

R3
=

−vo

Rf

vo = −
Rf

R1
vS1 −

Rf

R2
vS2 −

Rf

R3
vS3

The circuit scales (weights) the 
inputs and sums them.  Math!  The 
inverting input is a “summing node”. 
Useful in many applications.

v–
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If we can add, perhaps we can 
also subtract.  Find vo as 
function of the two inputs. 

Write NV equations at v– and v+.

Difference amp

–
+

R1

R2

+
–vb

–

+
voR3

R4
+
–va

vb − v−

R1
=

v− − vo

R2
+ i−

va − v+

R3
=

v+

R4
+ i+

Apply the op amp rules: i– = i+ = 0 and v+ = v–.

v+ = ( R4

R3 + R4 ) va

vo = (1 +
R2

R1 ) v− − ( R2

R1 ) vb = (1 +
R2

R1 ) ( R4

R3 + R4 ) va − ( R2

R1 ) vb

Input va is scaled, input vb is scaled, and then the output is the 
difference between those two quantities.
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Difference amp (con’t)

vo = (1 +
R2

R1 ) ( R4

R3 + R4 ) va − ( R2

R1 ) vb

This is an interesting result, but it becomes even more interesting if we 
play around with the resistors a bit. Start by re-arranging:

vo = (1 +
R2

R1 ) (
R4/R3

1 + R4/R3
) va − ( R2

R1 ) vb

If we choose the resistors 
such that R4 /R3 = R2 /R1 then 
the expression reduces to:

vo = ( R2

R1 ) (va − vb)

The circuit takes the difference between the two inputs and amplifies it.  It 
suppresses common voltages and enhances difference voltages.  For 
example, suppose va = 10.05 V = 10 V + 0.05 V and  
vb = 9.95 V = 10 V – 0.05 V.  The two inputs have a common voltage of 10 V 
and the difference is 0.1 V.  If we apply these signals to a difference amp 
with R4 /R3 = R2 /R1 = 10, the output will be 1 V.  The large common voltage 
has no effect — only the difference is amplified.  Diff amps are useful in 
sensor applications.
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Short-hand notation for voltage sources.
Because electronic circuits always have a pre-defined ground, it really 
isn’t necessary to draw all the sources. Instead, we use as a short-hand 
notation and simply label source or supply voltages at a particular node 
assuming that the indicated voltage is with respect to ground. The 
simplifies drawing and reading electronic circuit schematics.

–
+

R1

R2

+
–vS

–

+
vo

–
+

R1

R2

vo
vs

same

–
+

R2

R1

+
–vS

–

+
vo –

+

R2

vS vo

R1

same
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Power supplies
As mentioned previously, an op amp needs DC power supplies in order 
to function. In a sense, an op-amp is a power conversion device — it 
takes power from the DC and converts it to extra power added to the 
signal as it flows from input to output. Without DC supplies, the amp is 
just a dead element squatting in the middle of the circuit.  

There are two typical supply configurations for op amps: 1) two supplies 
— one positive and one negative, usually matched — with ground 
defined as the common point between them, or 2) a single positive 
supply with ground. The op amp will have pins for connecting to the 
supplies. Op amp (usually) do not have a pin that connects to ground, 
but in the single-supply case, the negative supply pin will be connected 
to ground. The single supply case could be viewed as having VS– = 0.

v+

–
+

+
–

v–

+
–

vo

VS– < 0

VS+ > 0
v+

–
+ +

–v–
vo VS+ > 0
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Including power supplies in the schematic become unwieldy, especially 
in circuits with multiple amps. Usually, the amps will share the same 
power supplies. If we want to show power supply connections 
explicitly, we can use the short-hand notation introduced earlier, where 
we simply label the voltages at the nodes.

v+

–
+

v–
vo

VS+ > 0

VS– < 0

v+

–
+

v–
vo

VS+ > 0

More typically, the power supply connections are not shown at all, as 
we did in all of the earlier examples. It is assumed that if the op amps 
are working, there must be power supplies available to make that 
happen.
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Combinations of op amps
There are four basic op-amp configurations: non-inverting, inverting, 
summing, difference. (The other examples are variations on these.)

–
+

R2

vS vo

R1

non-inverting, G = 1 +
R2

R1

–
+

R1

R2

vo
vs

inverting, G = −
R2

R1

–
+

Rf

vo

R1vS1

R2
vS2

summing, vo = −
Rf

R1
⋅ vS1 −

Rf

R2
⋅ vS2

difference, if balanced 
(R4 /R3 = R2 /R1), then

vo =
R2

R1
(va − vb)

–
+

R1

R2

vb
vo

R3
R4

va
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We can mix and match the basic configurations to achieve all sorts of 
circuit functions. The combining of op amp circuits works well because 
of the third feature of an ideal op amp: zero output resistance. With no 
output resistance, we can (in principle) connect anything to the output 
and not have to worry about mismatched input and output resistors 
affecting the voltage. If Ro = 0, the voltage divider ratio is always 1. 

Consider the simple cascaded pair of amp circuits shown below.

–
+

R3

R4

vo–
+

R2

vS vx

R1 RL
1 kΩ 12 kΩ

2.2 kΩ

6.8 kΩ

100 Ω

Because of the ideal output resistance, the voltage gains can considered 
piecemeal. 

vx = (1 +
R2

R1 ) vs

vo = −
R2

R1
vx

vo = (−
R4

R3 )(1 +
R2

R1 ) vs = − 40.2 ⋅ vs
The load resistor 
is irrelevant.

non-inverting

inverting
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Swapping the order of the two amps doesn’t change anything.

1 kΩ 12 kΩ

2.2 kΩ

6.8 kΩ

100 Ω

vo = (1 +
R2

R1 ) vx

vx = −
R2

R1
vs

–
+

R3

R4

vo
–
+

R2

vx

R1 RL

vS

vo = (1 +
R2

R1 )( −
R4

R3 )vs = − 40.2 ⋅ vs

Still irrelevant.
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Example 5
Find vo in terms of vx and vy. The circuit looks scary, but if we recognize 
the pieces and take them one at a time, it’s not so bad.

1.5 kΩ

5.6 kΩ

6.8 kΩ1 kΩ

1 kΩ

1 kΩ
12 kΩ

12 kΩ

va = (1 +
R4

R3 )vx = 7.8 ⋅ vxnon-inverting

vb = −
R2

R1
vy = − 3.73 ⋅ vyinverting

balanced 
difference amp

vo =
R6

R5
(va − vb)

= 12 (va − vb)

–
+

R5

R6

vb voR7

R8

va
–
+

R4

vx

R3

–
+

R1

R2

vy

vo = 12 [7.8 ⋅ vx − (−3.73 ⋅ vy)] = 93.6 ⋅ vx + 44.8 ⋅ vy
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Example 6
For the circuit below, calculate the total gain, G = vo /vS.

At first glance this looks like an inverting amp followed by a non-
inverting. But what is going on with R2? On further consideration, we 
realize that the left amp is actually a summing amp with feedback 
resistor R3, and two input, vS (through R1) and vo (!!) through R2. Once 
we see that, the analysis is easy.

1 kΩ

10 kΩ

5.6 kΩ

–
+

R3

R2

R1vs

–
+

R5

vo

R4

va

vo = (1 +
R4

R3 )va

non-invertingsumming

va = −
R3

R1
⋅ vs −

R3

R2
⋅ vo 4.7 kΩ1 kΩ

= 5.7 ⋅ va= − 10 ⋅ vs − 1.79 ⋅ vo

vo = 5.7 (−10 ⋅ vs − 1.79 ⋅ vo) →
vo

vs
= − 5.09
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Example 7
Devise a circuit with ideal op-amps and resistors that will take three 
inputs, va, vb, vc and combine them to produce an output voltage 
according to the function, vo = –6.67·va + 12·vb – 3·vc. 

There are many possible solutions. It looks like a three-input summing 
amp would come close, except for the positive middle term. A way to 
handle that would be to invert vb first before feeding it to the summing 
amp. The circuit below should work.

vo = −
Rf

Ra
⋅ va + (

Rf

Rb ) ( R2

R1 ) vb −
Rf

Rc
⋅ vc

After some trial-and-error in choosing resistors, the following set seems 
to work: Rf = 10 kΩ, Ra = 1.5 kΩ, Rc = 3.3 kΩ, R2 = 1.2 kΩ, R1 = 1 kΩ, and 
Rb = 1 kΩ. 

–
+

Rf

vo

Rava
Rb–

+

R1

R2

vb

Rcvc


