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The node voltage method
• Equivalent resistance 

• Voltage / current dividers 

• Source transformations 

• Node voltages 

• Mesh currents 

• Superposition

Not every circuit lends itself to “short-cut” methods. Sometimes we 
need a formal approach that does not rely on using a trick.  The node-
voltage is the first (and maybe most used) of our three formal methods. 

The node-voltage method is a systematic approach for deriving a set of 
simultaneous equations that can be solved to find the voltage at each 
node of the circuit. Once the node voltages are known, all currents and 
powers in the circuit follow easily. The method is identical for any size 
circuit, although the math will be messier for bigger circuits since the 
number of simultaneous equation scales with the number of nodes. 
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An example
Consider the circuit at right. It looks 
easy enough, but we are quickly 
disappointed when we find that no 
short-cut methods will help in trying 
to solve it.  We must go back to 
Kirchoff’s Laws. 

Let’s poke at this a bit using KCL.  
First identify all of the nodes — 
there are four in this case. Label the 
currents in each branch — the 
directions can be chosen arbitrarily.  
Then write KCL equations at the four 
nodes. 

a.

b.

c.

d.

iVS = iR1 + IR4

iR1 + iR3 = iR2

iR4 + IS = iR3

iR2 = IS + iVS

+
–VS IS

R1 R3

R4

R2iVS

iR1 iR3
iR2

iR4

+
–VS IS

R1 R3

R4

R2

a
b

c

d
There are four equations relating 
five unknown currents — not good.

8 V 0.375 A

40 Ω

20 Ω

40 Ω

20 Ω
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+
–VS ISiVS

iR1 iR3
iR2

iR4

–+ vR4

–+ vR1 – +vR3

–

+
vR2

a
b

c

d

We can use Ohm’s law to write 
resistor currents in terms of the 
resistor voltages.  (Pay attention to 
polarities. For the resistors, the 
voltage polarities must match the 
chosen current directions.) 

a.

b.

c.

d.

iVS =
vR1

R1
+

vR4

R4
vR1

R1
+

vR3

R3
=

vR2

R2
vR4

R4
+ IS =

vR3

R3
vR2

R2
= IS + iVS

This doesn’t improve the situation — there are still four equations 
relating five unknowns — four resistor voltages and the current flowing 
through the voltage source.
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+
–VS ISiVS

iR1 iR3
iR2

iR4

–+ vR4

–+ vR1 – +vR3

–

+
vR2

va

vb
vc

vd

We can take another step and assign 
a voltage to each node. (Recall that 
our definition of a node is a point of 
connection between components, 
and the node has a single voltage.)  
We can then write the resistor 
voltages as differences between the 
node voltages. 

a.

b.

c.

d.

iVS =
va − vb

R1
+

va − vc

R4
va − vb

R1
+

vc − vb

R3
=

vb − vd

R2
va − vc

R4
+ IS =

vc − vb

R3
vb − vd

R2
= IS + iVS

However, it seems that we are going in circles, since there are still 5 
unknowns — va, vb, vc, vd, and iVS.  Basically, we have just been 
changing names.  But we are ready for a crucial step.

vR1 = va − vb

vR2 = vb − vd

vR3 = vc − vb

vR4 = va − vc



G. Tuttle – 2022 node-voltage method – 5

Voltage, like energy, is a relative quantity — only differences are 
important.  The absolute values of va, vb, vc, and vd do not matter — only 
the differences, va – vb, va – vc, etc. are important, as we saw in the 
previous set of equations. This means that we can assign a voltage value to 
one node, and then all other node voltages can be defined with respect to 
that chosen node voltage. We could assign any voltage that we want, but 
an obvious value would be 0 V.  When a particular node is chosen to have 
“0 volts”, we call it the ground node. 

We are free to choose any of the nodes in the circuit to be the ground.  We 
will see in the examples to follow that some choices are better than others, 
but, at least initially, each node is an equally viable ground.

In this example, we will choose 
node d to be ground, and so, by our 
definition vd = 0. Once we have 
chosen a node to serve as ground, 
we denote that in the circuit with 
the ground symbol, as shown at 
right. 

+
–VS IS

R1 R3

R4

R2iVS

iR1 iR3
iR2

iR4

va

vb
vc

vd = 0
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Choosing a ground node to serve as a voltage reference has two 
significant effects on the set of equations that describe the circuit.  The 
first is that, since the voltage at d was assigned to be zero, it is no longer 
“unknown” and our math problem reduces to a set of four equations 
with four unknowns — va, vb, vc, and iVS. The set can be solved! 

a.

b.

c.

d.

We could just get to work and solve these equations, but we can do 
more to make the job easier.

iVS =
va − vb

R1
+

va − vc

R4
va − vb

R1
+

vc − vb

R3
=

vb

R2
va − vc

R4
+ IS =

vc − vb

R3
vb

R2
= IS + iVS
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The second effect is that, by defining node d as ground, we also 
immediately know the value of va.  By the definition of a voltage source, 
va = vd + VS = 0 + VS = VS.  So we also know va. The four equations now 
have only 3 unknowns — we have the luxury of choosing which equations 
to solve to find the remaining unknown quantities. 

a.

b.

c.

d.

iVS =
VS − vb

R1
+

VS − vc

R4
VS − vb

R1
+

vc − vb

R3
=

vb

R2
VS − vc

R4
+ IS =

vc − vb

R3
vb

R2
= IS + iVS

In examining the set of equations, 
we see that the middle two 
equations depend only on the node 
voltages, vb and vc.  So we could 
solve just those two equations to 
find vb and vc. Then we can 
immediately calculate iVS using 
either the first or the last equation.

Our approach of focusing on the node voltages, defining one as ground, 
and then using the information provided by the voltage source has allowed 
us to reduce a messy problem of 5 unknowns with 4 equations to the 
tractable problem of 2 unknown node voltages related by two equations.  
The tricky issue of handling the current of the voltage source has, in 
essence, disappeared from view.



G. Tuttle – 2022 node-voltage method – 8

VS − vb

R1
+

vc − vb

R3
=

vb

R2

VS − vc

R4
+ IS =

vc − vb

R3

Taking the two equations relating vb and vc and working on them a bit:

VS − vb +
R1

R3
(vc − vb) =

R1

R2
vb VS − vc + R4IS =

R4

R3
(vc − vb)

(1 +
R1

R2
+

R1

R3 ) vb −
R1

R3
vc = VS −

R4

R3
vb + (1 +

R4

R3 ) vc = VS + R4IS

Insert numbers:

(1 +
40 Ω
20 Ω

+
40 Ω
40 Ω ) vb −

40 Ω
40 Ω

vc = 8 V

−
20 Ω
40 Ω

vb + (1 +
20 Ω
40 Ω ) vc = 8 V + (20 Ω) (0.375 mA)

5vb − vc = 8 V

−0.5vb + 1.5vc = 15.5 V
Solve the 2x2 to give: vb = 5 V and vc = 12 V.
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Let’s step through the same problem 
again, but now use the knowledge 
gained from the first time through. 

First, identify the nodes and choose 
one to be ground. Again, any node 
could be ground. Choose the 
bottom one again. 

Now, with the ground chosen, we 
note that the voltage at the node 
above the voltage source must be 
VS. That leaves two nodes where the 
voltage is not known. This time, we 
will label the voltages vx and vy. (The 
specific names are irrelevant.) 

Identify the currents flowing into 
and out of the unknown nodes. 
Since we don’t yet know the 
currents, we can choose the 
directions however we want.

+
–VS IS

R1 R3

R4

R2
24 V 0.25 A

40 Ω

20 Ω

40 Ω

20 Ω

+
–VS IS

R1 R3

R4

R2iVS

iR1 iR3
iR2

iR4

VS

vx
vy

vd = 0
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+
–VS IS

R1 R3

R4

R2iVS

iR1 iR3
iR2

iR4

VS

vx
vy

vd = 0

The currents that enter and leave the 
two unknown nodes are iR1, iR2, iR3, iR4, 
and IS. Note that the troublesome iVS 
won’t be involved, since it does flow 
into or out of of an unknown node. 
This is good! 

At each of the unknown nodes, use 
KCL to balance the currents flowing in 
and out: 

x.

y.

iR1 + iR3 = iR2

iR4 + IS = iR3

Next, use Ohm’s law to write each resistor current in terms of the node 

voltages on either end of the resistor: , etc.iR1 =
VS − vx

R1
VS − vx

R1
+

vy − vx

R3
=

vx

R2

VS − vy

R4
+ IS =

vy − vx

R3

These are the two node-voltage equations that can be solved to find the 
two unknown node voltages. The rest is just math. 

This approach is known as the node-voltage method.
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The node-voltage method
1. Identify all of the nodes in the circuit. 

2. Choose one node to be ground. In principle, the choice is arbitrary, but, if 
possible, choose a node that is connected to a voltage source. The chosen 
node is assigned a voltage of 0. 

3. Identify nodes for which the voltage is known due to sources. 

4. If possible, use short cuts to eliminate any non-essential nodes. 

5. Assign variables for the voltages at the remaining unknown nodes. 

6. Assign currents to all of the branches connected to the nodes. In principle, 
the direction is arbitrary.  Label the voltage polarity for any resistors. 
(Make sure that that voltage polarities match the current direction!) 

7. Write KCL equations relating the currents at each of the unknown nodes. 

8. Use Ohm’s law to express resistor currents in terms of the (unknown) node 
voltages on either side of the resistor.  

9. Substitute the resistor currents into the KCL equations to form the node-
voltage equations — a set of equations relating the unknown node 
voltages. 

10. Do the math to solve the equations and determine the node voltages. 
Determine currents, powers, etc., if needed.
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Apply the node-voltage method to 
the “2 source – 2 resistor” problem.

12

Example 1

Step 1 – Identify the nodes in the 
circuit.  Three in this case.

10 V 1 A

10 Ω

5 Ω

+
–VS

R1

R2 IS

a
b

c

+
–VS

R1

R2 IS

a
b

Step 2 – Choose one to be ground. 
We choose node c in this case. +

–VS

R1

R2 IS

vc = 0
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b
Step 3 – Identify other nodes for 
which the voltage is known.  In this 
case, the source VS between ground 
and node a means that va = VS.

+
–VS

R1

R2 IS

vc = 0

va = VS

Step 4 – Reduce the circuit using series or parallel combinations.  For 
this circuit, there are no simplifications.

Step 5 – Assign variables for the 
voltages at the remaining unknown 
nodes. In this case, there is only one 
unknown node voltage.

+
–VS

R1

R2 IS

vc = 0

va = VS vb
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+
–VS ISiR2

–+ vR1

–

+
vR2

iR1

Step 6 – Assign currents to all of the 
branches connected to the nodes. In 
principle, the direction is arbitrary.  
Label the voltage polarity for any 
resistors. (Be sure to get the 
polarities correct!)

Step 7 – Write KCL equations 
relating the currents at each of the 
unknown nodes. In this case, there 
is only one equation.

vc = 0

va = VS vb

iR1 + IS = iR2

Step 8 – Use Ohm’s law to express 
resistor currents in terms of the 
(unknown) node voltages on either 
side of the resistor. 

iR1 =
vR1

R1
=

va − vb

R1
=

VS − vb

R1

iR2 =
vR2

R2
=

vb − vc

R2
=

vb

R2
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Step 9 – Substitute the resistor 
currents into the KCL equation to 
form the node-voltage equations — 
a set of equations relating the 
unknown node voltages.

VS − vb

R1
+ IS =

vb

R2

Step 10 – Do the math to find the 
node voltage.

10 V 1 A

10 Ω

5 Ω

+
–VS

R1

R2 IS
VS − vb

R1
+ IS =

vb

R2

VS − vb + ISR1 =
R1

R2
vb

(1 +
R1

R2 ) vb = VS + ISR1

vb =
VS + ISR1

1 + R1

R2

vb =
10 V + (1 A) (10 Ω)

1 + 10 Ω
5 Ω

vb = 6.67 V

Once vb is known, the currents 
and powers are easily found 
using Kirchoff’s laws.
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Let’s apply the node voltage 
method to the simple ladder 
circuit shown.  Recall that we 
solved this circuit earlier by using 
the voltage divider method twice.

16

Example 2

Step 1 – Identify the nodes in the 
circuit.  Four in this case.

15 V 2.5 kΩ

2.5 kΩ

10 kΩ

a
b

d

Step 2 – Choose one to be ground. 
Nodes a or d would be good 
choices — we will go with d.

+
–VS

R1

R2

R3

R4

7.5 kΩ

+
–VS

R1

R2

R3

R4

c

a
b

c

+
–VS

R1

R2

R3

R4

vd = 0
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Step 3 – Identify other nodes for 
which the voltage is known.  As in 
the previous example, the voltage 
source causes node a to have 
voltage va = VS.

va = VS

Step 4 – Reduce the circuit using series or parallel combinations.  In this 
case, we could eliminate node c by combining R3 and R4 and treating 
them as a single resistor.  Then the problem reduces to having a single 
unknown (vb) and it could be handled easily using a voltage divider, 
taking us back to our earlier method. However, to better illustrate the 
node-voltage method, we will keep the two resistors separate, with 
node c between them.

Step 5 – Assign variables for the 
voltages at the remaining unknown 
nodes. In this case, there are two 
unknown node voltages.

b
c

+
–VS

R1

R2

R3

R4

vd = 0

va = VS

+
–VS

R1

R2

R3

R4

vd = 0

vb vc
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Step 6 – Assign currents to all of the 
branches connected to the nodes. In 
principle, the direction is arbitrary.  
Label the voltage polarity for any 
resistors — take care to match 
voltage polarity to current direction.

Step 7 – Write KCL equations 
relating the currents at each of the 
unknown nodes.

vd = 0

va = VS
vb

iR1 = iR2 + iR3

Step 8 – Use Ohm’s law to express 
resistor currents in terms of the 
(unknown) node voltages on either 
side of the resistor. 

iR1 =
vR1

R1
=

va − vb

R1
=

VS − vb

R1

iR2 =
vR2

R2
=

vb − vd

R2
=

vb

R2

+
–VS iR2

–+ vR1

–

+
vR2

iR1
iR4

–+ vR3

–

+
vR4

iR3

vc

iR3 = iR4

iR3 =
vR3

R3
=

vb − vc

R3

iR4 =
vR4

R4
=

vc − vd

R4
=

v4

R4
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Step 9 – Substitute the resistor 
currents into the KCL equation(s) to 
form the node-voltage equations.

VS − vb

R1
=

vb

R2
+

vb − vc

R3

Step 10 – Do the math to find the 
node voltages.

Two equations, two unknowns: 
Solve to give: vb = 10 V, vc = 2.5 V

vb − vc

R3
=

vc

R4

15 V 2.5 kΩ

2.5 kΩ

10 kΩ

+
–VS

R1

R2

R3

R4

7.5 kΩ

VS − vb =
R1

R2
vb +

R1

R3
(vb − vc)

vb − vc =
R3

R4
vc

(1 +
R1

R2
+

R1

R3 ) vb −
R1

R3
vc = Vs

vb − (1 +
R3

R4 ) vc = 0

1.5833vb − 0.333vc = 15 V

vb − 4vc = 0
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As we become more 
familiar with the node-
voltage procedure, we 
can probably do some of 
the steps by “inspection”, 
without writing out 
everything.

20

Example 3

We see that there are four nodes in the circuit.  Making things easier, there 
are two voltage sources that share a common connection.  It makes sense 
to choose that node as ground.  The ground and the two voltage sources 
mean that we already know the voltages of three of the nodes.  This 
becomes a “one-node” circuit and should be easy to solve.

+
–VS1

R1

R2

R3

+
– VS2IS

iR2

–+ vR1

–

+
vR2

iR1

–+ vR3

iR3+
–VS1 +

– VS2IS

v = 0

vxv = VS1 v = VS2

25 V 5 mA

3 kΩ

1 kΩ

2 kΩ

10 V
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There are no series/parallel simplifications, so we can jump directly to 
writing the KCL equation.

at node x : iR1 + IS = iR2 + iR3

As we become better at recognizing how the node voltages relate to the 
resistor currents, we can immediately re-write the currents above in 
terms of node voltages and resistors:

VS1 − vx

R1
+ IS =

vx

R2
+

vx − VS2

R3

The circuit analysis is done, and the rest is just math.

VS1 − vx + R1IS =
R1

R2
Vx +

R1

R3
vx −

R1

R3
VS2

(1 +
R1

R2
+

R1

R3 ) vx = VS1 + R1IS +
R1

R3
VS2

vx =
VS1 + R1IS + R1

R3
VS2

1 + R1

R2
+ R1

R3

=
25 V + (3 kΩ) (5 mA) + 3 kΩ

2 kΩ (25 V)
1 + 3 kΩ

1 kΩ + 3 kΩ
2 kΩ

= 10 V
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Practice makes perfect.  Here is a circuit with three voltage sources.

22

Example 4

There are six nodes in the circuit.  Fortunately, if we choose ground at 
the bottom once again, then three of the nodes will have known 
voltages due to the sources.

5 V

8 kΩ
+
–

R1 R3 R5

R4

R2 R6VS2 VS3VS1 +
–

+
–

R7

45 V 35 V6 kΩ

48 kΩ

16 kΩ

32 kΩ

10.67 kΩ

8 kΩ
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There are no series/parallel simplifications, so we can label the two 
unknown voltages and define the currents. Again, directions are 
arbitrary at this point.

at node “isu” : iR1 + iR3 = iR2 + iR4

Write the KCL equations at the two nodes:

+
–

R1 R3 R5

R4

R2 R6VS2 VS3VS1 iR2
iR1

iR6
iR5iR3

iR4
visu vcy

+
–

+
–

R7

iR7

at node “cy” : iR4 + iR5 + iR7 = iR6

v = VS1 v = VS3v = VS2
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The circuit analysis is done, and we need to finish the math to find the 
voltages. Start by re-arranging.

Convert the KCL equations to node-voltage equations using Ohm’s law 
and the node voltages.

VS1 − visu

R1
+

VS2 − visu

R3
=

visu

R2
+

visu − vcy

R4

VS2 − vcy

R5
+

VS3 − vcy

R7
+

visu − vcy

R4
=

vcy

R6

(1 +
R3

R1
+

R3

R2
+

R3

R4 ) visu −
R3

R4
vcy = VS2 +

R3

R1
VS1

−
R5

R4
visu + (1 +

R5

R4
+

R5

R6
+

R5

R7 ) vcy = VS2 +
R5

R7
VS3
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(1 +
48 kΩ
8 kΩ

+
48 kΩ
6 kΩ

+
48 kΩ
16 kΩ ) visu −

48 kΩ
16 kΩ

vcy = 45 V +
48 kΩ
8 kΩ (5 V)

−
32 kΩ
16 kΩ

visu + (1 +
32 kΩ
16 kΩ

+
32 kΩ

10.67 kΩ
+

32 kΩ
8 kΩ ) vcy = 45 V +

32 kΩ
8 kΩ (35 V)

Plug in the values:

18visu − 3vcy = 75 V

−2visu − 10vcy = 185 V

Solve to give:  and visu = 7.5 V vcy = 20 V
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Here is a slightly bigger circuit to tackle.  The approach doesn’t change.

26

Example 5

60 V 0.2 A

+
–

R1 R3 R4

R6

R2 R5IS1 IS2VS

We see that there are five nodes.  Choose the ground connection — the 
nodes on either side of the voltage source are good options.  Choosing the 
bottom node as ground makes the voltage at the left-hand node equal to 
VS.

0.2 A

75 Ω

75 Ω

150 Ω 300 Ω

150 Ω

150 Ω
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That leaves three unknown node voltages. Those are labeled as above, 
along with currents in each of the branches connected by nodes.  Write 
KCL equations for the currents at each of the nodes and then convert 
them to node-voltage equations.

+
–

R1 R3 R4

R6

R2 R5IS1 IS2VS iR2
iR1

iR5
iR4iR3

iR6
vx vy vz

x : 

y : 

z : 

iR1 = iR2 + iR3

iR3 = IS1 + iR4

iR4 + IR6 + IS2 = iR5

x : 

y : 

z : 

VS − vx

R1
=

vx

R2
+

vx − vy

R3
vx − vy

R3
= IS +

vy − vz

R4
vy − vz

R4
+

VS − vz

R6
+ IS2 =

vz

R5

Example 5
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Now take care of the math. First, re-arrange the 
equations: 

x : 

y : 

z : 

Then insert the values 

x : 

y : 

z : 

And then solve* 

vx = 26 V, vy = 10 V, and vz = 38 V.

(1 +
R1

R2
+

R1

R3 ) vx −
R1

R3
vy = VS

vx − (1 +
R3

R4 ) vy +
R3

R4
vz = R3IS1

−
R6

R4
vy + (1 +

R6

R4
+

R6

R5 ) vz = VS + R6IS2

2.5vx − 0.5vy = 60 V

vx − 1.5vy + 0.5vz = 30 V

−0.5vy + 2.5vz = 90 V

* Use an on-line calculator 

- http://math.bd.psu.edu/~jpp4/finitemath/3x3solver.html 

- http://www.1728.org/unknwn3.htm 

- https://www.wolframalpha.com 

Or use the solver on your calculator.

There is no “correct” way 
to do the algebra after 
the NV equations have 
been determined. All of 
the examples shown in 
these notes use an 
approach that forms 
dimensionless resistor 
ratios for the coefficients. 
But there are other 
algebraic methods that 
are equally good. 

Example 5

http://math.bd.psu.edu/~jpp4/finitemath/3x3solver.html
http://www.1728.org/unknwn3.htm
https://www.wolframalpha.com
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+
–VS1

R1

R2

+–

VS2

R3 IS

As described above and demonstrated in the examples, the node-
voltage method works well in most circuits. However, there is one 
situation where the basic algorithm fails, and we must improvise a bit. 
Consider the circuit below. 

Rogue voltage sources

There are four nodes, and at first glance it looks like another routine 
application of the method. The complication arises in choosing which 
node to be ground. There are two voltage sources, and they do not 
share a node. We need to pick a ground, and we will stick with past 
habit and put it at the bottom node.

6 V

0.1 A

150 Ω

100 Ω 75 Ω24 V
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There are two unknown 
node voltages. That 
seems OK.

But things get sticky when we write the two KCL equations,

a : 

b : 

iR1 = iR2 + iVS2

iVS2 + IS = IR3

iR2

va

iR1+
–VS1

+–

VS2

IS

vb

iR3
iVS2

and try to turn them into node-voltage equations,

a : 

b : 

VS1 − va

R1
=

va

R2
+ iVS2

iVS2 + IS =
vb

R3

The two expected unknowns, va and vb, are joined by a third, iVS2 — the 
current through the second voltage source. Two equations, three 
unknowns — not good.
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We could use the second equation to write iVS2 in terms of IS and vb and 
then insert the result into the first equation, thus eliminating iVS2. But the 
result is one equation in two unknowns. So that is not helpful. 

The correct approach is to find another equation relating the quantities 
that can be added to the mix. We can call the extra relation the auxiliary 
equation. In this case, VS2 — with its unknown current — is causing the 
difficulty in analyzing this circuit, but it also offers the way out of the 
conundrum. From the definition of a voltage source, we can write the 
auxiliary equation: VS2 = vb – va. Now, we have three equations in three 
unknowns, and the path to a solution is clear.

a : 

b : 

VS1 − va

R1
=

va

R2
+ iVS2

iVS2 + IS =
vb

R3
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a : 

b : 

aux : VS2 = vb – va

VS1 − va

R1
=

va

R2
+ iVS2

iVS2 + IS =
vb

R3

There are several ways to handle 
the math. One is to eliminate iVS2 
from a and b, as suggested above. VS2 = vb – va

VS1 − va

R1
=

va

R2
+

vb

R3
− IS

Then use the auxiliary equation to solve for vb and substitute into the 
other equation.

VS1 − va

R1
=

va

R2
+

VS2 + va

R3
− IS

Solve for va :     and  vb = va + VS2 = 12 V.va =
VS1 + R1IS − R1

R3
⋅ VS2

1 + R1

R2
+ R1

R3

= 6 V
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The super node
Some textbooks offer a slight variation on the approach just described. 
The alternate method avoids even having to acknowledge that the 
troublesome voltage source has an unknown current. The trick is to 
create a “really big node” or super node that completely encloses the 
offending voltage source. The method relies on the fact that KCL applies 
to any sized entity. It doesn’t matter how big it is — what goes in must 
come out. We typically apply KCL to the bundle of wires that makes up 
a node, but it works just as well if we make a little box that contains 
some portion of the circuit — what goes into the box must come out.

In particular for this circuit, 
we make a box that 
contains VS2 and the nodes 
on either side of it, as 
shown at right. The box is 
the super node. Then apply 
KCL to the box:

iR1 + IS = iR2 + iR3

Note that iVS2 does not appear!

iR2

va

iR1
+
–VS1

+–

VS2

IS

vb

iR3

iVS2
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iR1 + IS = iR2 + iR3

Now that we have a KCL equation, we can forget about the super node. 
(The super node does not have a single voltage — on one side the 
voltage is va and the other it is vb. So in this sense, the super node is not 
like “regular” nodes that we typically use. The super node’s only 
purpose is to come up with a simpler KCL equation.) 

Now we proceed as before — use Ohm’s law to express the currents in 
terms of the voltages on either sides. Here we use va and vb.

VS1 − va

R1
+ IS =

va

R2
+

vb

R3

This gives us a single equation in two unknowns. Note that this is exactly 
the same situation that we encountered previously. To go any further, we 
once again need the auxiliary equation, VS2 = vb – va. Now we have two 
equations in two unknowns, and the math proceeds as before. 

There is nothing particularly “super” at the super node approach. It is a 
clever maneuver that allows us avoid one unknown in our system of 
equations. It is not a requirement to employ a super node.
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Use the node voltage method to 
find the current through R4.  

We need to find voltages on either 
side of R4. The two voltage sources 
are not connected. This looks like 
another circuit that may need an 
auxiliary equation. (And we could 
use a super node.) 

Example 6

Choose the bottom node to be 
ground. Write KCL equations at the 
three other nodes.

a : 

b : 

c : 

iR2 = iR1 + iVS2

iR3 + iR4 + IS = 0

iVS2 = iR4

Grrr. As expected iVS2 is causing trouble.

8 V

1 kΩ
4 V

+
–VS1R1 IS

+– R4
VS2

a b

c

R2 R3

+
–VS1 IS

+–

VS2

a b

c

iR2 iR3

iR1

iR4iVS2

1 kΩ 1 kΩ

1 kΩ

4 mA
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Turn the KCL expressions 
into node-voltage equations.

a : 

b : 

c : 

VS1 − va

R2
=

va

R1
+ iVS2

VS1 − vb

R3
+

vc − vb

R4
+ IS = 0

iVS2 =
vc − vb

R4

Three equations, four unknowns. We still need an auxiliary equation. 
Fortunately, one is readily at hand: VS2 = vc – va. Now we have enough 
equations. 

We could stuff the four equations into a solver and let it grind, but we 
can be more elegant that that. First, substitute the expression for iVS2 
from c in to a.

a : 

b : 

VS1 − va

R2
=

va

R1
+

vc − vb

R4
VS1 − vb

R3
+

vc − vb

R4
+ IS = 0

Example 6
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Then we can substitute vc = VS2 + va at the appropriate spots, leaving us 
with two equations and two unknowns 

a : 

b : 

VS1 − va

R2
=

va

R1
+

VS2 + va − vb

R4
VS1 − vb

R3
+

VS2 + va − vb

R4
+ IS = 0

Re-arrange into a nicer form

(1 +
R2

R1
+

R2

R4 ) va −
R2

R4
vb = VS1 +

R2

R4
⋅ VS2

−
R3

R4
⋅ va + (1 +

R3

R4 ) vb = VS1 +
R3

R4
⋅ VS2 + R3 ⋅ IS

3va − vb = 12 V

−va + 2vb = 16 V

Insert numbers

Solve to give va = 8 V and vb = 12 V. 

Then vc = 16 V and iR4 = (16 V – 12 V) /1 kΩ = 4 mA.

Example 6
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+
–VS1 IS

+–

VS2

a b

c

iR2 iR3

iR1

iR4iVS2

To use the super-node approach, we would draw a box around the 
second source and the nodes on either side. The box has a strange 
shape, but that’s OK.

Balancing currents that are crossing 
the boundary of the box:

iR2 = iR1 + iR4

No iVS2! Turning this into a node-
voltage equation:

VS1 − va

R2
=

va

R1
+

vc − vb

R4

This is identical to equation a on the previous slide. We are on the same 
math path taken previously, and we would arrive at the same end result.

Example 6


