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Inductance and inductors

B =
μoisc

2πr

Consider a short circuit that is carrying a 
current iSC — we have seen shorts often and 
know that the no voltage developed, 
regardless of current level.

iSC

However, we also recall from basic 
electromagnetic that a current in a wire will 
have a magnetic field circulating around it.  
The field pattern is circular and the strength 
of the field diminishes with increasing 
distance from the wire.

Whenever charges are moving in a conductor, there will be magnetic 
fields present. Since is takes some energy to generate the field, it can 
viewed as having some energy stored in it. 

In a typical wire in a typical EE 201 circuit, the magnetic field and 
associated energy are very small and can probably be neglected in most 
instances.
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Magnetic fields — a very short review
Magnetic fields are characterized by two different field quantities, 

     H → magnetic field strength, units of amperes /meter (A/m) 

     B → magnetic flux density, units of tesla (T) [ = V·s /m2 } 

The two are related and in common materials, either can be used as the 
primary description of a magnetic field.  In general, both are vector 
quantities.  (We will ignore the vector nature of the magnetic fields in 
our simplified discussion of inductors.) The relationship between B and 
H is given by the constitutive equation: 

      

where µ is the permeability of the material where the magnetic field 
exists.  The units of permeability are henries/meter (H/m).  The free 
space value of permeability is µo = 4π ×10–7 H/m.  Most materials have 
the free-space value of permeability, but some materials — usually 
alloys that contain iron, nickel, cobalt, or gadolinium — have higher 
permeabilities. A higher permeability is characterized by a relative 
permeability, µr, which is the factor by which the permeability is 
increased over the free-space value.

B = μH
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Magnetic flux density
In discussing inductors, we will focus on B, the magnetic flux density.  
Visualizing EM fields and making sense of the different quantities is 
always difficult.  To develop a more intuitive feel for B, we can think 
about the field in terms of field lines. The magnetic flux density indicates 
how tightly packed the magnetic field lines are in a region of space.  
The more tightly packed they are (i.e. the higher the density), the 
stronger the field.

B1 B2 > B1 B3 > B2

end views
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 Magnetic flux
Given a magnetic flux density, we can define an area in the space 
where the magnetic field exists.  Within that area, there will be some 
number of magnetic field lines.  The number within the area is called 
the magnetic flux.

ΦB = B ⋅ A

ΦB1 ΦB2 > ΦB1 ΦB3 > ΦB2

ΦB1 = ΦB2!!

Units of webers, Wb, (= V·s)
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Faraday’s Law of Induction

–+vF

Consider a magnetic field with magnetic flux density, B.  A loop 
of wire defines an area A that has lines of magnetic field crossing 
through it.  The loop defines a magnetic flux.

ΦB = B ⋅ A

Faraday discovered that if a wire loop has magnetic field lines cutting through 
i — defining a magnetic flux in within the loop and if the magnetic flux is 
changing, there will be voltage a induced across the terminals of the wire.  
(More rigorously, an electric field is produced between the open ends of the 
wire.  Of course, we know that if there is an electric field, there will be a 
corresponding voltage difference.)

vF = −
dΦB

dt

The negative sign comes from “Lenz’s Law”, which 
says that the magnetic field created by the current in 
the loop caused by the induced vF must be opposite 
the original magnetic field. 

The induced voltage can be the result of the magnetic field itself changing (as 
with inductors — to be seen shortly) or by having the area change by moving 
the loop within the field (as in the case of electric generators). Or both.
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Coil
Wrapping N turns of wire around a core creates a coil. If the turns of the 
coil are packed tightly together, the magnetic fields curling around each 
individual wire will merge to create an approximately uniform magnetic 
field extending down the length of the interior core.  The interior 
magnetic flux density will be 

      

where l is the length of the core, µ is permeability of the core material 
and icoil is the current in wire. 

If the core has a cross-sectional area of A, the  corresponding magnetic 
flux is 

     . 

(The N turns increases the effective area intersecting the magnetic flux 
density.)

Bcore = ( μ ⋅ N
l ) icoil

ΦB = N ⋅ Bcore ⋅ A = ( μN2A
l ) icoil
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Inductance

      

The magnetic flux is directly proportional to the 
current.  We can define the proportionality constant 
as the self-inductance. 

        where   . 

ΦB = ( μN2A
l ) icoil

ΦB = L ⋅ icoil L =
μN2A

l

L

For a given amount of current, the field can be increased by: increasing 
the number of turns, increasing the diameter of the coil (increasing A), 
decreasing the length of the coil, or by having the core made of a 
material with higher permeability. 

The units of inductance are henries or H (after American scientist Joseph 
Henry.)  1 H = 1 V·s/A.  Typical values used in circuits range from about 
1 µH upwards to as much 0.1 H.  (In power systems, much bigger 
inductors are possible.)

Inductor circuit 
symbol.
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Inductor voltage
A straight-forward application of Faraday’s Law to 
the magnetic flux of an inductor gives:

ΦB = L ⋅ icoil

−
dΦB

dt
= vL = L

diL
dt

vL = L
diL
dt

leading to the all-important current-voltage relationship for an inductor:

A consideration of Lenz’s Law leads to the indicated relationship 
between current direction and voltage polarity — identical to 
relationship in a resistor or capacitor. 

If the current is not changing, then there is no voltage and the inductor 
behaves like a simple (if somewhat lengthy) short circuit.  When the 
current is changing, the changing field causes a voltage to be 
developed that is proportional to the time derivative of the current. 

Conversely, if there is a voltage on the inductor, then current must be 
changing.  The current can be calculated by turning the above 
equation around:

–

+
vL

iL

iL (t) − iL (0) =
1
L ∫

t

0
vL (τ) dτ
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Due to the derivative in the 
inductor equation, the current 
cannot change instantaneously.  
This would require an infinitely 
large voltage and an infinitely large 
amount of power.

For t < 1ms, diL /dt = 0 → vL = 0. 

For 1 ms < t < 2 ms, diL /dt = 4000 A/s → vL = (0.001 H)(4000 A/s) = 4 V.

For t > 2 ms, diL /dt = 0 → vL = 0.

L

–

+

vLIL

iL

t

5 A

1 A

1 ms 2 ms

vL

t

4 V

0
1 ms 2 ms

iL

t

5 A

1 A

diL
dt

→ ∞ vL → ∞!

However, the inductor voltage can change instantaneously, — the slope 
change abruptly, as long as the current is continuous.

Example



EE 201 inductors – 10

Inductor energy
The induced magnetic field requires energy in order for it to build up — 
the magnetic field represents energy stored in the inductor. 

To determine the stored energy, start with power.  When the inductor is 
“amping up”, the power is 

           

The change in energy due to a change in current can be found by 
integrating the power over time. 

          

If we choose iL(0) = 0, which corresponds to no stored magnetic energy, 
the inductor energy corresponding to given a current can written as 

             

Typical value: For L = 1 mH and iL = 10 A, E = 0.05 J — not a whole lot.

PL (t) = iL (t) vL (t) = LiL
diL
dt

ΔE = ∫
iL(t)

iL(0)
PL (t) dt = ∫

iL(t)

iL(0)
iLdiL =

1
2

L [i2
L (t) − i2

L (0)]

EL =
1
2

Li2
L
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Series and parallel inductor combinations
is = i1 + i2 + i3

Inductor combinations are identical 
to those for resistors.

Parallel

Series

L1
L2

L3

iL

–

+
veqLeq

–

+
vL2

–+ vL1

– +vL3

YHT = Y/� + Y/� + Y/�

/HT
L/
GW = /�

L/
GW + /�

L/
GW + /�

L/
GW

/HT = /� + /� + /�

= (/� + /� + /�)
L/
GW

ieq

–
vL
+

Leq L3L2L1
iL1 iL2 iL3

LHT = L/� + L/� + L/�

GLHT
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GL/�
GW +

GL/�
GW +

GL/�
GW

Y/
/HT
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Y/
//�

+
Y/
//�

+
Y/
//�
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//�
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//�

+
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//�

11


