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Complex numbers
The need for imaginary and complex numbers arises when finding the 
two roots of a quadratic equation. 

The two roots are given by the quadratic formula

There are no problems as long as (β/2α)2 ≥ γ/α – there are two real roots 
and everything is clean.  But if (β/2α)2 < γ/α, then we are faced with 
having to take the square-root of a negative number. 

In “ancient” times, such situations were deemed impossible and simply 
ignored.  And yet, physical systems described by the “impossible” 
parameters continued to function, generally with very interesting 
results.  Clearly, ignoring the problem is not helpful.

αx2 + βx + γ = 0
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So what to do when faced with such situations?

z = a +
�

�b2

It took a couple of hundred years, but the people working on the 
problem realized that the square-root term had useful physical 
information and could not be ignored.  However, square-root term was 
different from the real number represented by the first term.  The second 
term had to be treated in a special way, and a new algebra had to be 
developed to handle these special numbers.  (Actually, the new algebra 
is an extension of the old real number algebra. 

The special nature of the square-root term is signified by introducing a 
new symbol.

�
�b2 =

�
�1

�
b2 = jb

where                    and b is conventional real number. 

(Note: In almost all other fields, it is conventional to use                  .  
However, in EE/CprE, we use i for current, and so it has become 
normal practice in our business to use j.)

j = −1

i = −1
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Clearly, this number j has some interesting properties:

j · j = j2 = –1.

j3 = j · j · j = (j · j) · j = (–1) · j = –j.

j4 = j2 · j2 = (–1) · (–1) = +1.

j5  = j4 · j = (+1) · j = +j.

Looking at successively higher powers of j, we cycle through the four 
values, +j, –1, –j, +1.

A number, like jb, that has a negative value for its square, is known as 
an imaginary number.  (This is really a poor choice of terminology.)

A number, like z = a + jb, that is the sum of  a real term and an 
imaginary term is  known as a complex number.
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How to work with this new type of number?  Clearly, an imaginary 
number is somehow different from a familiar real number.  In thinking 
about how real numbers relate to each other and when visualizing 
functions of real numbers, we often start with a real number line.  All 
real numbers are represented by a point on the line.  Similarly, 
imaginary numbers can be represented by points on an imaginary 
number line.
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real

imaginary

Now we have two number lines – how are they related? In working this 
out, the early mathematicians came to the conclusion that the 
imaginary axis is perpendicular to the real axis, so that the two axes 
form what is essentially an x-y set of coordinates. The real and 
imaginary parts of a complex number give the coordinates of a point in 
the complex plane.

Complex number plane

1 + j1

2 – j1

! + j2
�

�
6+ j

�
2

0 + j2.667

–1.5 + j0

–1 – j2
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Complex math – addition and subtraction
Addition and subtraction with complex numbers is straight-forward.  
Add (or subtract) the real parts and then add (or subtract) the imaginary 
parts.  Obviously, the result is also a complex number.

z1 = a + jb z2 = c + jd

z1 + z2  = (a + jb)+ (c + jd) = (a + c) + j(b + d) 

z1 – z2  = (a + jb) – (c + jd) = (a – c) + j(b – d) 

(1 + j4) + (2 + j1) = 3 + j5

(–1 + j4) + (2 – j6) = 1 – j2

(1 + j4) – (2 + j1) = –1 + j3

(–1 + j4) – (2 – j6) = –3 + j10



EE 201 complex numbers – �7

Complex math – multiplication
Multiplication is also straight-forward.  It is essentially the same as 
multiplying polynomials — just make sure that every term is multiplied 
by every other term.  The result will be a mixing of the reals and 
imaginaries from the two factors, and these will need to be sorted out 
for the final result.

z1 · z2  = (a + jb)·(c + jd) = ac + jad + jbc + (j)2bd

Note that the two imaginary terms multiply together to give a real, since 
j2 = –1. Collect the real and imaginary parts to write the complex 
number in standard form.

z1 · z2  = (a + jb)·(c + jd) = (ac – bd) + j(ad + bc)



EE 201 complex numbers – �8

Complex math – complex conjugates
The two roots that are the solutions to a quadratic equation may be 
complex.  In that case, the roots come as set:

z1 = a + jb   and   z2 = a – jb

The same real part and the imaginary parts have 
opposite signs.  

Numbers having this relationship are known as 
complex conjugates.  Every complex number, z, has a 
conjugate, denoted as  z*.  From above

z1* = a – jb   and   z2* = a + jb

Again, the two roots are complex conjugates of each other.

Conjugates in the 
complex plane.

z + z� = (a + jb) + (a � jb) = 2a

purely real!

purely real

purely imaginaryz � z� = (a + jb) � (a � jb) = j (2b)

z · z� = (a + jb) · (a � jb) = a2 � jab + jab + b2 = a2 + b2

re

im

z1

z2

z3
z�
2

z�
3

z�
1
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Complex math – division
Dividing one complex number by another gets messier.

z1
z2

=
a + jb
c + jd

It looks like we would have to resort to methods used when dividing 
polynomials. But we are saved with a trick using complex conjugates.  
Recall that when a complex number is multiplied by it’s conjugate, the  
result is a purely real number.  Making use of that, we multiply 
numerator and denominator by z2*. 

z1
z2

· z�
2

z�
2

=
a + jb
c + jd · c � jd

c � jd

z1
z2

=
ac � jad + jbc + bd

c2 + d2 =

�
ac + bd
c2 + d2

�
+ j

�
bc � ad
c2 + d2

�

re im
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Polar representation

re

im

z1

a

bM

θ

Specifying a complex number in the complex 
plane using the real and imaginary parts is 
quite simple — it the same as specifying 
points with rectangular coordinates.

However, we also know that a point can be specified using polar 
coordinates.  In our case, we would locate the complex number in the 
plane by specifying an angle (or heading) and distance from the origin 
to the point along that heading.  To describe the complex number in 
polar form, we use the magnitude (M) and the angle (θ). A commonly 
used notation for specifying a complex number in polar form is to list 
the magnitude followed by the angle inside a “angle bracket” simple.

z1 = M θ

You might see this notation in many circuits texts. We will not use it in 
EE 201, because there is a better notation that is more descriptive.
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re

im

z1

a

bM

θ

rectangular to polar (and back)
From the plot in the complex plane, we see 
that the conversion from rectangular form 
(a + jb) to polar form (M  θ ) is a simple 
application of trigonometry. 

M = a2 + b2

θ = arctan ( b
a )

b = M sin θ

It is equally easy to convert from polar to rectangular.

a = M cos θ
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Euler

exp (jθ) = cos θ + j sin θ = a + jb

One of the more profound notions in math is that if that if we take the 
exponential of an imaginary angle, exp(jθ) the result is a complex 
number.  The interpretation is given by Euler’s formula.

Every complex number of this form has a magnitude of 1.

M = cos2 θ + sin2 θ = 1

re

im

-0.5

M = 1

0.866
θ

θ = 120° = 0.667π

ej(120∘)

re

im

0.707

M = 1 0.707
θ

ej(45∘)

θ = 45° = π /4

re

im

M = 1

θ

θ = -90° = -π /2

-1
e−j(90∘)

exp (jπ) + 1 = 0

(Euler’s identity.)
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pseudo-proof

exp (θ) = 1 +
θ
1!

+
θ2

2!
+

θ3

3!
+

θ4

4!
+

θ5

5!
+

θ6

6!
+

θ7

7!
+ …

= 1 + j
θ
1!

−
θ2

2!
− j

θ3

3!
+

θ4

4!
+ j

θ5

5!
−

θ6

6!
− j

θ7

7!
+ …

= [1 −
θ2

2!
+

θ4

4!
−

θ6

6!
+ …] + j [ θ

1!
−

θ3

3!
+

θ5

5!
−

θ7

7!
+ …]

cos θ = 1 −
θ2

2!
+

θ4

4!
−

θ6

6!
+ … sin θ =

θ
1!

−
θ3

3!
+

θ5

5!
−

θ7

7!
+ …

cos θ + j sin θ = [1 −
θ2

2!
+

θ4

4!
−

θ6

6!
+ …] + j [ θ

1!
−

θ3

3!
+

θ5

5!
−

θ7

7!
+ …]

cos θ + j sin θ = exp (jθ)
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The expression exp(jθ) is a complex number pointing at an angle of θ and 
with a magnitude of 1.  (M = 1).  We can use this notation to express other 
complex numbers with M ≠ 1 by multiplying by the magnitude.

M exp (jθ)

This is just another way of expressing a complex number in polar form.

M  θ  same as

z = M exp (jθ)

Using Euler’s formula:

z = M exp (jθ) = M cos θ + jM sin θ = a + jb
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The exponential form is actually a better representation, because it 
allows us to do multiplications and division directly — there’s no need 
to convert to real/imaginary form first.

z1 = M1 exp (jθ1) z2 = M2 exp (jθ2)

z1 ⋅ z2 = [M1 exp (jθ1)] [M2 exp (jθ2)] = (M1M2) exp [j (θ1 + θ2)]
Magnitudes multiply and angles add.

z1

z2
=

M1 exp (jθ1)
M2 exp (jθ2)

=
M1

M2
exp [j (θ1 − θ2)]

Magnitudes divide and angles subtract.
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z1 = 4 + j3

z2 = 2 + j2

z1 = 5 exp (j36.9∘)
z2 = 2.83 exp (j45∘)

zp = z1 ⋅ z2 = (4 + j3) (2 + j2) = (4 ⋅ 2 − 3 ⋅ 2) + j (4 ⋅ 2 + 3 ⋅ 2) = 2 + j14

zp = 2 + j14 zp = 14.1 exp (j81.9∘)
zp = z1 ⋅ z2 = [5 exp (j36.9∘)] [2.83 exp (j45∘)] = 14.1 exp (j81.9∘)

zq =
z1

z2
=

4 + j3
2 + j2

=
(4 ⋅ 2 + 3 ⋅ 2) + j (−4 ⋅ 2 + 3 ⋅ 2)

22 + 22
= 1.75 − j0.25

zq = 1.75 − j0.25 zq = 1.77 exp (−j8.1∘)

zq =
z1

z2
=

5 exp (j36.9∘)
2.83 exp (j45∘)

= 1.77 exp (−j81.9∘)
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The complex conjugate in polar form is also quite easy.

z = a + jb

z * = a − jb

z = M exp (jθ)

z * = M exp (−jθ)

M * = a2 + b2 = M

θ * = arctan ( −b
a ) = − arctan ( b

a ) = − θ

M = a2 + b2 θ = arctan ( b
a )

z ⋅ z * = [M exp (jθ)] [M exp (−jθ)] = M2 = a2 + b2

As expected.

re

im
z

a

b
M

z*

θ

–θ –b
M
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cos θ =
ejθ + e−jθ

2
sin θ =

ejθ − e−jθ

2j

j−1 = − j

j = 1 ⋅ exp (j
π
2 )

1
j

=
1

1 ⋅ exp (j π
2 )

= 1 ⋅ exp (−j
π
2 ) = − j

j = ?Give this one a try:

For a graphical interpretation, draw these in the complex plane.  We 
will use this frequently.

sinusoids represented as complex exponentials.

Here is an interesting relationship:

Simple proof:


