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Capacitors
Consider an open circuit:
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There is some energy “stored”.

There was a bit of current flow 
when the voltage changed.

Effect is weak for 
dangling wires.  
(But not zero!)
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Change the geometry – have parallel plates with area A

Capacitance
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same voltage
• much more charge 
• much more electric field 
• much more energy stored

Q = CV E =
V

d

increase charge 
with better 
dielectric material 
and more area.

increase field (and 
hence Q) by moving 
plates closer together

C → capacitance

farads (F) = C / V

air:  εo = 8.85x10–12 F/m

other materials:  ε = εr εo 

relative dielectric:  εr  = constant

4 = �E$
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2 plates, each with area A.

Parallel-plate capacitor

d+Q

–Q & =
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Example: A = 1 cm2, d = 0.001 cm, air dielectric

Wow.  Very small value, and it is already a fairly large area plate.

Higher values? 

• higher dielectric material between the electrodes 
• thinner dielectric 
• winding or stacking to get larger surface area into a smaller volume.

Other configurations are possible, but parallel-plate is most common.

Values range from 10 pF to 100 µF, (and higher).  A 1-F capacitor is 
huge and quite rare.
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Capacitor current
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Note that passive sign convention.

At DC, ic = 0. (It’s just a fancy open circuit.)

However, some current must flow when voltage is changing. 
Otherwise, the charge would not change.

4 = &Y&
Current only flows when voltage is changing.
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In Maxwell’s equations, the current due to changing 
field is called displacement current.

GE
GW � G4

GW

As current flows, the capacitor charge 
increases or decreases.
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L& = &GYF
GW

Capacitor voltage cannot change instantaneously.

t

vC

infinite current!GYF
GW � �

Note, though, that current can change instantaneously.

also

can’t happen.
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Capacitor energy
An energy storage device 

• Charge the cap to some voltage.  Charge (and energy) stays.  
Remove it later. 

• Ideal capacitor dissipates no energy – no heat generated. 
• Real capacitors do show some leakage.  (Large resistor in parallel.)  

Usually negligible.

When charging a capacitor, the power being delivered is given by:

The energy delivered by the source, and hence the energy stored in 
the capacitor is (assuming vC = 0 at t = 0 and vC(tf) = VC.)
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3& (W) = Y& (W) L& (W) = &Y&
GY&
GW
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Combinations of capacitors
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Capacitors combinations are 
exactly opposite those of resistors.

Parallel

Series
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Example
A voltage source connected across a capacitor has a ramp (or triangle) 
shape as a function of time. It ramps from 0 V to 5 V in 10 ms and then 
ramps back down to 0 V in another 10 ms.  What is the current in the 
capacitor?

10 ms < t < 20 ms: vC(t) = (–500 V/s)·(t – 10 ms) + 5 V

                                         = –(500 V/s)·t + 10 V

0 < t < 10 ms: vC(t) = (5V/10ms)·t = (500 V/s)·t

vC

t

5 V

10 ms 20 ms

+
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Vramp C

We can write expressions for the voltage as a function of time.

1 µF
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0 ms < t < 10 ms: iC (t) = CdvC
dt = (1 μF) · (500 V/s) = +0.5 mA

10 ms < t < 20 ms: iC (t) = CdvC
dt = (1 μF) · (�500 V/s) = �0.5 mA

iC

t

0.5 mA

–0.5 mA

The current is constant for each portion – positive current during the 
upward ramp and negative during the downward ramp.

We find the current by taking the derivative of the voltage and 
multiplying by the capacitance.



EE 201 capacitors – �10

Example

What is vo for the circuit at right?

Start as always: write a node 
equation at the inverting input.

iR = iC + i–

vs � v�
R = Cdvc

dt + i�

For an op-amp with a feedback loop: v– = v+, so v– = 0 in this case 
(virtual ground).  And, for an ideal op amp: i– = 0.  Also, note vC = 0 – vo.

vs
R = �Cdvo

dt

vo (t) =
1
RC

� t

0
vs (t�) dt� + vo (0) A circuit that integrates!
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Example

The voltage across the capacitor at 
right is a sinusoid: vs(t) = Vmsin(ωt). 
What is the capacitor current?

iC (t) = CdvC (t)
dt = [ωCVm] cos (ωt)

Interesting.  The current has also a 
sinusoidal form, but it is shifted by 90°.  
Also, the magnitude of the current 
waveform depends on the frequency of 
the oscillation – faster oscillation leads to 
bigger currents.  The frequency-dependent 
amplitude and the phase shift will have 
far-reaching implications when we study 
sinusoidal circuits in more detail.

= Im cos (ωt) = Im sin (ωt � 90�)

+
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iC

–
vC
+

Vmsin(ωt) C
1 µF

Vm = 5 V; ω = 377 rad/s

Im = 1.88 mA


