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AC analysis
Now we turn to circuits with sinusoidal sources.  Earlier, we had a brief look 
at sinusoids, but now we will add in capacitors and inductors, making the 
story much more interesting. 

What are sinusoids so important in our business? 

• Almost all electrical energy generated and transmitted in the world is in the 
form of sinusoid voltages and currents.  (DC generation – in the form of 
solar cells – is on the rise, but AC power is still dominant.)  Rotating 
machines (generators) naturally produce sinusoidal voltages and currents. 
voltages.  Also, it is easy to change voltage levels using transformers.  Much 
of this is due to Tesla (the man, not the car company). 

• We will learn in later classes (electronics, signal and systems) that all 
electrical waveforms can be described in terms of sinusoids.  (This is 
Fourier analysis.)  For instance, a square wave can be viewed as a 
combination of many sinusoids of various frequencies and amplitudes.  
This concept is at the heart of encoding information into electrical signals.  
Since we can express every waveform in terms of sinusoids, once we know 
how a circuit responds to a sinusoid, we can know how it will respond to 
any kind of waveform.
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Independent voltage and current sources will be time-dependent of the 
form 

As we proceed, we will learn that it doesn’t really matter whether a 
source is a sine or cosine.  For a single source, the 90° phase difference 
between a sine or cosine is irrelevant. It is true that in a sinusoidal 
circuit, the phases of all other voltages and currents in the circuit are 
extremely important.  But since the source is the forcing function in the 
circuit, all other voltages and currents will come into alignment with it, 
according Kirchoff’s Laws.  The frequency will be the same everywhere, 
and the amplitudes and phase differences will be with respect to 
whatever the source is doing.  If the phase of the source is shifted by 
90°, everything in the circuit will shift by 90° in response.   

There is no absolute value of phase — only phase differences matter.  
(Phase is like energy in that respect.)

VS (t) = Vm cos ωt IS (t) = Im sin ωt

Sinusoidal sources
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T – period.  Time for one complete cycle.  From the graph, T = 1 ms. 

f – frequency.  Cycles in one second.  f = 1/T.  Here f = 1/(1ms) = 1000 Hz. 

ω – angular frequency.  Radians in one second.  ω = 2πf.  Here ω = 6283 rad/s.

Vm – magnitude or amplitude or peak. 

Also, peak-to-peak = 2·Vm  (Used by function generator.) Here, Vm = 2 Vpp 

Also, RMS =                (Used by multimeter.) Here, Vm = 0.707 VRMS
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Plot of sinusoidal waveform.

Vm sin ( 2π
T )

Vm sin (2πft)

Vm sin ωt

Vm / 2

From the graph, 
Vm = 1 V.
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v1 = V1 cos ωt

v2 = V2 cos (ωt − θ)

V1 = 1 V

V2 = 0.5 V

θ = π/4 = 45°→  ∆t = 0.125 ms.
θ = ωΔt =

2π
T

Δt = 2πfΔt

θ = (360∘) Δt
T

= (360∘) fΔt

ΔtT = 1 ms, f = 1 kHz.

Phase angle
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+
–VS(t) = Vmcos ωt R

i(t)

L (W) =
9P

5 cos֌W

+
–VS(t) = Vmcos ωt Ci(t)

L (W) = �֌&9P sin֌W

+
–VS(t) = Vmcos ωt Li(t)

L (W) =
9P

֌/ sin֌W

Current in phase 
with voltage.

Current leads 
voltage by 90°.

Current lags 
voltage by 90°.
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It’s time to take the plunge and solve a circuit that has a mixture of 
components driven by a sinusoidal source.  Rather than plunging, 
perhaps we should step gingerly and try a relatively simple circuit — a 
resistor and a capacitor in series, driven by a sinusoidal voltage source, 
as shown below. 

The circuit looks to be similar to the RC version of the step-function 
transient circuits we studied earlier. But the results will be quite different 
due to the sinusoidal source, which will become the forcing function in 
the upcoming differential equation.

Example: RC circuit

1.5 k!

0.1 µFVm = 5 V

ω = 6660 rad/s 
(f = 1060 Hz. T = 0.943 ms)

+
–Vmcosωt

–

+
vC(t)

R

C
i(t)

t = 0
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We assume the switch closes exactly at t = 0, when the source voltage is 
at its very peak.  Obviously, this might be rather tricky in real life, but on 
paper we can assume that it will happen.  Shortly, we will invoke a 
simplification that makes the timing of the switch irrelevant.  Also, we 
will use the initial condition that the capacitor voltage is 0 before the 
switch closes, and so will still be at zero at the instant after the switch 
has closed. Then initial condition for the capacitor is vC (t = 0) = 0.

Start with KVL:

Vm cos ωt − vC (t)
R

= C
dvC (t)

dt

iR = iC

dvC (t)
dt

+
vC (t)
RC

=
Vm (t)
RC

cos ωt

+
–Vmcosωt

–

+
vC(t)

R

C
i(t)

t > 0
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Use the two-solution approach: vc(t) = vtr(t) + vSS(t). 

Start with transient (homogeneous) part.

guess →

→

See if there is a value of s that works.  Determine D later using initial 
conditions.  Insert the guess into the homogeneous equation.

vtr = D exp (st)

sDest +
D

RC
est = 0

s +
1

RC
= 0

s = −
1

RC
= −

1
τ

vtr = D exp (−
t

RC ) The transient part is a decaying exponential, 
just as we have seen previously.

dvtr (t)
dt

+
vtr (t)
RC

= 0
dvss (t)

dt
+

vss (t)
RC

= Vm cos ωt
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Now try to find a steady-state solution.

Given that the forcing function is cos(ωt), it might seem reasonable to use 
vss(t) = Acos(ωt) as a trial function and then try to find a value of A that 
works.  Plugging the trial function into the differential equation:

That’s not going to work.  There is no value of A that will satisfy this 
equation for all values of t.  It will not help to try sin(ωt) either — the 
derivative will generate a cosine term, leading again to a mixture of sine 
and cosine terms on the left side.  And there are no trig identities that will 
get us out of this jam.  This is a dead end. 

Because the derivative in the steady-state equation introduces a term with 
sin(ωt), maybe we need to make our trial function a bit more inclusive 
and have 2 sinusoidal terms.

dvss (t)
dt

+
vss (t)
RC

= Vm cos ωt

−ωA sin ωt +
A

RC
cos ωt =

Vm

RC
cos ωt

vss (t) = A cos ωt + B sin ωt
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Substituting this into the steady-state equation makes things a bit more 
complicated, but also gives us a route to a solution.

vss (t) = A cos ωt + B sin ωttrial function:

[ A
RC

+ ωB] cos ωt + [−ωA +
B

RC
+] sin ωt =

Vm

RC
cos ωt

Gathering sine and cosine terms,

−ωA sin ωt + ωB cos ωt +
A

RC
cos ωt +

B
RC

sin ωt =
Vm

RC
cos ωt

We see that things will work out if

A
RC

+ ωB =
Vm

RC
and −ωA +

B
RC

= 0

These are two equations in the two unknowns, A and B.  We should be 
good at solving such problems by now.
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Solving the two equations for A and B in terms of R, C, ω, and Vm:

A =
1

1 + (ωRC)2 Vm B =
ωRC

1 + (ωRC)2 Vm

These expression look a bit messy, but with A and B as given, the trial 
solution matches the requirements for being a steady-state solution to 
the differential equation.

vss (t) = [ Vm

1 + (ωRC)2 ] cos ωt + [ ωRCVm

1 + (ωRC)2 ] sin ωt

Then, the complete solution is:

vC (t) = [ Vm

1 + (ωRC)2 ] cos ωt + [ ωRCVm

1 + (ωRC)2 ] sin ωt + D exp (−
t

RC )
Plugging in numbers:

vC (t) = (2.5 V) cos ωt + (2.5 V) sin ωt + D exp (−
t

RC )
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All that is left is to determine D.  Using the initial condition:

That’s the whole shebang. 

vC (t = 0) = 0 = A + D

Then, D = –A = –2.5 V.

vC (t) = (2.5 V) cos ωt + (2.5 V) sin ωt − (2.5 V) exp (−
t
τ )

 ω = 6660 rad/s and τ = 1.5 ms.

As we saw with RC step-change transients, after 5 time constants (5 ms 
in this case), the exponential term will decay away to essentially 
nothing.  After the transient has faded, the capacitor voltage will 
oscillate in a sinusoidal fashion forever, driven by the source voltage.
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Below are two plots of the source and capacitor voltages. The left one 
starts at zero and shows the transient at the startup. The right plot shows 
a couple of periods well beyond the 5 time constants of the transient, 
where we can see the steady-state situation.

0 < t < 2 ms (transient) 10 ms < t < 12 ms (steady state)
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Examining the steady-state plots, we note something interesting.  We 
know that the capacitor voltage consists of a sum of two sinusoids.  Yet, 
the capacitor trace looks like a single sinusoid at the same frequency as 
the source voltage (which is to be expected), but reduced in amplitude 
and shifted in phase. 

Indeed, that is exactly the case.  Two pure sinusoids oscillating at the 
same frequency will always add to produce a single sinusoid with a 
different amplitude and possibly a phase shift. 

There is a trig identity for this situation — it’s a bit obscure, but useful in 
this case.  Given the sum of a cosine and sine, the 

A cos x + B sin x = M cos (x − δx)

δx = arctan ( B
A )M = A2 + B2where and

(These relationships look vaguely familiar.)
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=
V2

m

[1 + (ωRC)2]
2 +

(ωRC)2 V2
m

[1 + (ωRC)2]
2

=
Vm

1 + (ωRC)2

θ = arctan ( B
A )

vC (t) = (3.54 V) cos (ωt − 45∘) − [2.5 V] e− t
τ

Applying this identity to the capacitor voltage:

M = A2 + B2

Yuck!

Well, that’s not so bad.

= 3.54 V

= arctan (ωRC)

= 45∘

Then, the capacitor voltage can be 
written with one sinusoidal term:
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(Probes 
removed.)

Measurement of the RC circuit in the 
lab.  One 1.5-kΩ resistor and one 
0.1-µF cap. 

Yellow is the source, green is the 
capacitor voltage.  Measured values 
are in the lower corner of the screen.
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A second example
Consider an RLC circuit with a 
sinusoidal source.  The switch 
closes at t = 0 (when the source 
is at its peak).  For t < 0, the 
capacitor voltage and the 
current are both zero.

The RLC step-function transient problem was much more complicated 
than the first-order versions.  Is a second-order sinusoidal problem 
significantly more complicated than a first-order version?  Let’s find out. 

Start with KVL:
VS (t) = vR + vC + vL

= iR + vC + L
di
dt

i = C
dvC

dt

= RC
dvC

dt
+ vC + LC

d2vC

dt2

d2vC

dt2
+

R
L

dvC

dt
+

1
LC

vC =
Vm

LC
cos ωt

750 !

0.167 µFVm = 5 V
ω = 10000 rad/s 
(f = 1592 Hz
T = 0.628 ms)

0.015 H

+
–Vmcosωt

–

+
vC(t)

R

C
i(t)

t = 0

L

Recall,                .  Substitute in.
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Once again, we look for transient and steady-state solutions.

d2vC (t)
dt2

+
R
L

dvC (t)
dt

+
1

LC
vC (t) =

Vm

LC
cos ωt

vC (t) = vtr (t) + vss (t)

d2vtr (t)
dt2

+
R
L

dvtr (t)
dt

+
1

LC
vtr (t) = 0

d2vss (t)
dt2

+
R
L

dvss (t)
dt

+
1

LC
vss (t) =

Vm

LC
cos ωt

(homogeneous)

(particular)

The homogeneous equation is exactly the same as we found in the 
earlier RLC step-function problem, and the solution here will be the 
same — over-damped or under-damped transients, depending on the 
amount of resistance in the circuit.  In either case, the transient function 
will fade away after a few time constants, leaving only the steady-state 
response. 
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vtr (t) = D exp (s1t) + F exp (s2t)
s1 = −

R
2L

+ ( R
2L )

2

−
1

LC

s2 = −
R
2L

− ( R
2L )

2

−
1

LC

Inserting the component values from the circuit, we find that the 
transient response is underdamped (both roots are real and negative), 
with 

     s1 = –10000 s–1  (τ1 = 0.1 ms = 100 µs)  and 

     s2 = –40000 s–1  (τ2 = 0.025 ms = 25 µs) 

The transient response will have decayed away almost completely after 
0.5 ms, which less than one period of the sinusoid.

Let’s finish the transient analysis first.  From our earlier work with step-
functions, we know the form for the transient function and the 
expressions for the two roots:   
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Again, we expect the steady-state function to follow the general from of 
the forcing function, but as we saw in the previous example, the 
derivatives on the left-hand side will produce terms that go as the sinωt. 
So, as was necessary last time, it seems reasonable to use 

as a trial function. Inserting the trial function into the differential 
equation 
 
 
 
and gathering together the sine and cosine terms:

Now turn to the steady-state half of the problem.

d2vss

dt2
+

R
L

dvss

dt
+

1
LC

vss =
Vm

LC
cos ωt

vss (t) = A cos ωt + B sin ωt

−ω2 (A cos ωt + B sin ωt) +
ωR
L (−A sin ωt + B cos ωt) +

1
LC (A cos ωt + B sin ωt) =

Vm

LC
cos ωt

(−ω2A +
ωR
L

B +
1

LC
A) cos ωt + (−ω2B −

ωR
L

A +
1

LC
B) sin ωt =

Vm

LC
cos ωt
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(−ω2A +
ωR
L

B +
1

LC
A) cos ωt + (−ω2B −

ωR
L

A +
1

LC
B) sin ωt =

Vm

LC
cos ωt

The proposed trial function will work if the coefficients A and B satisfy

−ω2A +
ωR
L

B +
1

LC
A =

Vm

LC

−ω2B −
ωR
L

A +
1

LC
B = 0

Two equations, two unknowns.  Solving:

A =
1 − ω2LC

(1 − ω2LC)2 + (ωRC)2
Vm

B =
ωRC

(1 − ω2LC)2 + (ωRC)2
Vm

Plugging in the specific values from the circuit: A = 1.76 V and B = 2.94 V.
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vC (t) = D exp (s1t) + F exp (s2t) + A cos ωt + B sin ωt

The complete solution is: s1 = –10000 s–1 

s2 = –40000 s–1

A = 1.76 V
B = 2.94 V

We still need to find the coefficients D and F for the transient part.  We 
use the initial conditions to get those: vC(t = 0) = 0 and i(t = 0) = 0.  The 
voltage condition is straight-forward.  The current condition implies that 
the derivative of the capacitor voltage must be 0 just after the switch: i/C 
= dvc/dt = 0.  Applying these two conditions:

vC (0) = D + F + A = 0

dvC

dt
t=0

= s1D + s2F + ωB = 0

Solving gives:

D =
s2A − ωB

s1 − s2
= − 3.33 V

F =
s1A − ωB

s2 − s1
= 1.57 V

vC (t) = (−3.33 V) exp (s1t) + (1.57 V) exp (s2t) + (1.76 V) cos ωt + (2.94 V) sin ωt
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vC (t) = (−3.33 V) exp (s1t) + (1.57 V) exp (s2t) + (1.76 V) cos ωt + (2.94 V) sin ωt
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Below are two plots of the source and capacitor voltages. The left one 
starts at zero and shows the transient at the startup. The right plot shows 
a couple of periods that are well beyond the 5 time constants of the 
transient, where we can see the steady-state situation.

0 < t < 1.25 ms (transient) 6.25 ms < t < 7.5 ms (steady state)
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In looking at the steady-state plots we see that the capacitor voltage is a 
sinusoid at the same frequency as the source, but with reduced amplitude 
and shifted in phase.  Interestingly, the general behavior of the steady-state 
function is just like that of the simpler RC circuit of example 1.  The details 
(amplitude and phase shift) are different because they are different circuits, 
but the qualitative features are similar. 

We can use the “sum of two sinusoids” identity introduced earlier to find the 
magnitude and phase shift of the capacitor voltage,

= (1 − ω2LC)2 V2
m

[(1 − ω2LC)2 + (ωRC)2]
2 +

(ωRC)2 V2
m

[(1 − ω2LC)2 + (ωRC)2]
2

M = A2 + B2

θ = arctan ( ωRC
1 − ω2LC )

=
Vm

(1 − ω2LC)2 + (ωRC)2

= 3.43 V
= 59∘

vtr = (3.43 V) cos (ωt − 59∘)

( Yikes!! )

θ = arctan ( B
A )
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Measurement of the RLC circuit in the 
lab.  Two 1.5-kΩ resistors in parallel = 
750 Ω and two 0.33-µF caps in series 
= 0.167 µF.  The inductor is 15 mH. 

Yellow is the source, green is the 
capacitor voltage.  Measured values 
are in the lower corner of the screen.

(Probes 
removed.)



EE 201 AC analysis – �26

Example 3: RL circuit
In the previous two sinusoid examples, we slashed through a lot of 
math, but in the end the steady-state responses of the capacitor voltages 
were quite similar — sinusoids with slightly reduced amplitudes and a 
phase that is shifted somewhat from the source.  Is the similarity a fluke? 
Does it have something to do with capacitors? Or sinusoidal voltage 
sources? Is it the cosine function? To check, let’s switch it up and try an 
RL combination driven by a current source that has sinωt dependence. 

In the circuit, the switch closes at t = 0.  The inductor current is zero for 
t < 0, and so the initial condition is iL (t = 0) = 0.

750 !
15 mHIm = 6.67 mA

ω = 50000 rad/s 
(f = 7958 Hz. T = 0.126 ms)

t = 0

iL(t)Imsinωt R L
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A = −
( ωL

R ) Im

1 + ( ωL
R )

2 = − 3.33 mA

B =
Im

1 + ( ωL
R )

2 = 3.33 mA

iL (t) = A cos ωt + B sin ωt + D exp (−
t
τ ) = M cos (ωt − θ) + D exp (−

t
τ )

τ =
L
R

= 20 μs

We will not go through the details here.   
However, the general form of the results are 
nearly identical to the RC and RLC circuits 
— the inductor current consists of a transient 
plus a sinusoid that has a reduced amplitude 
and is phase shifted from the source 
sinusoid.  The final results are given below.

t > 0

iL(t)Imsinωt R
–

+
v(t)

M =
Im

1 + ( ωL
R )

2
= 4.71 mA

D = − A = 3.33 mA

θ = arctan
1

− ωL
R

= 135∘

( Mind the quadrant!! )
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iL (t) = − (3.33 mA) cos ωt + (3.33 mA) sin ωt + (3.33 mA) exp (−
t

20 μs )
iL (t) = (4.71 mA) cos (ωt − 135∘) + (3.33 mA) exp (−

t
20 μs )


