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Consider the circuit shown below. We would like find the AC voltage 
across the resistor — magnitude and phase. We have done this before.

1

AC resonance

vS (t) = Vm cos ωt +
– R

C L

–

+
vR (t)

The complex voltage on the resistor is easily found using a voltage 
divider with the three impedances: ZC, ZL, and ZR. 

Re-arranging: 

ṼR =
ZR

ZC + ZL + ZR
ṼS =

R
1

jωC + jωL + R
Vm

ṼR =
R

R + j (ωL − 1
ωC )

500 Ω

0.1 µF
100 mH

Vm = 10 V
 = 10,000 rad/sω
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That seems simple enough. Now plug in the numbers: 

 

Remarkable! The resistor voltage has the same magnitude and the 
source and is exactly in phase. It is as if the inductor and capacitor have 
disappeared from the circuit. 

The source of this unusual result is readily apparent: 

The impedance for the inductor happens to have exactly the same 
magnitude as the impedance for the capacitor. Since the two have 
opposite signs, they have canceled each other out in the voltage divider 
equation, leaving only the resistor. We call this phenomenon series 
resonance. 

ṼR =
R

R + j (ωL − 1
ωC )

ṼS

ṼR =
500 Ω

500 Ω + j (1000 Ω − 1000 Ω)
(10 V) = 10 V
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It is easy to see the condition for series resonance. Given a capacitor 
and inductor in series, the combined impedance is 

Obviously, the combination will be equal to zero when . 

So given an AC problem with a specific operating frequency, we can 
always come up with an LC combination that creates series resonance. 

Conversely, given an LC series combination, there is always a specific 
frequency at which resonance will occur: 

   — the resonant frequency

Any circuit with an inductor/capacitor can experience resonance, and it 
can cause strange effects that may surprise us if we are not on the 
lookout for it. On the other hand, resonance can be extremely useful if 
we know how to exploit it. We will see examples of using resonance 
when maximizing AC power transfer, building filter circuits, or making 
electronic circuits that create sinusoidal voltages (oscillators). 

ZLC = jωL +
1

jωC
= jωL (1 −

1
ω2LC )

ω2LC = 1

ωo =
1

LC



G. Tuttle - 2022 AC resonance – 4

We might naively jump to the conclusion that, since the series LC 
combination has no voltage across it, the individual voltages across the 
inductor and capacitor are also both zero. This is most definitely 
incorrect! In fact, the actual values might be quite surprising. 

To find the inductor and capacitor voltages, we could use the voltage 
divider equation again, but in this case, it is probably easier to find the 
current in the series circuit and then find the voltages from that. 

(i.e. magnitude of 20 mA with and angle of 0°) 

Then 

 

The magnitudes of the inductor and capacitor voltages are bigger than the 
magnitude of the source voltage! Can this be correct? It seems that there is 
too much energy in the circuit — is there some sort of amplification?

ĨS =
ṼR

R
=

10 V
500 Ω

= 20 mA

ṼL = ZL ⋅ ĨS = (jωL) ĨS = (j1000 Ω) (20 mA) = j20 V

ṼC = ZC ⋅ ĨS = ( 1
jωC ) ĨS = (−j1000 Ω) (20 mA) = − j20 V
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There is no amplification and all of the energy/power comes from the 
source. The apparent conundrum results from our use of complex AC 
analysis to analyze the circuit. One of the basic assumptions of AC 
analysis was to ignore the transient phase of the circuit and look only at 
the steady-state behavior. By ignoring the transient, we don’t see the 
gradual build-up of energy in the reactive components — we see only the 
final result in which just the right amount of energy is “stored” in the 
circuit. Some energy is in the inductor and some in the capacitor and they 
constantly trade energy back and forth, maintaining an exact balance. 

An analogy is a swing at a children’s playground. The rider can “pump up” 
the swing by shifting their weight back and forth at a rate that matches the 
natural oscillation frequency of the pendulum. The rider adds energy 
during each “pump”, building up the amplitude of the swing. At steady 
state, the accumulated energy in the system (gravitational potential and 
kinetic) is traded back and forth as the pendulum swings. The rider 
continues to add a bit of energy during each oscillation to compensate for 
any losses. 

There are many similar situations in electrical engineering systems — 
electronic oscillator circuits and lasers are two common examples.
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In order to see the build-up of the energy in the resonant system, we must 
step back from complex AC analysis for a moment and return to the full 
solution as a function of time, including the transient. 

We will find the complete solution for the current in the circuit, and from 
that we can find any of the component voltages. Recall that we need two 
functions for the complete solution, the steady-state and the transient. We 
can find the steady-state current using the steady-state voltage: 

 

where Im = 20 mA. Finding the transient function requires the usual tedious 
business of finding the characteristic roots of the differential equation and 
matching initial conditions. In this case, we assume that both the current 
and its derivative are zero at t = 0.

 and  . 

We won’t include the entire procedure here, but it is very similar to what 
we did earlier when we examined transient response in second-order 
circuits. (Work through the details as an exercise.)

ĩ =
ṼR

R
=

Vm

R
=

10 V
500 Ω

= 20 mA → iss (t) = Im cos ωt

i (0) = 0
di
dt t=0

= 0
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It turns out the circuit is under-damped and the transient solution is: 

where  is the damping factor and  is the 

damped oscillation frequency. The complete solution is the sum of the 
transient and steady-state functions: 

(Reminder:  is the source frequency which is set to the resonance 
frequency and  is the damped frequency of the transient — they are not 
the same! ) 

From the components, we can calculate the parameters in the equation: 

 (corresponding to a decay time constant of 0.4 ms) and 
 — close to, but not equal to — the resonant frequency. 

Now we can make a plot of the current as a function of time and see the 
build-up during the transient.

itr (t) = Ime−σt (−cos ωdt −
σ
ω

sin ωdt)
σ =

R
2L

ωd =
1

LC
− ( R

2L )
2

itr = Ime−σt (−cos ωdt −
σ
ω

sin ωdt) + Im cos ωt

ω
ωd

σ = 2500 s−1

ωd = 9682 rad/s
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Current build up 
in the series 
resonant circuit.

At the start the current is small, but it builds up with each cycle. With a 
time constant of 0.4 ms, the transient is essentially complete by 2 ms. After 
that, the current oscillates at the source frequency (which is the resonant 
frequency of the circuit), with an amplitude of 20 mA, corresponding to 
the resistor voltage of 10 V and inductor and capacitor voltages of 20 V.
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Although it is “fun” to solve the 
complete equation by hand in 
order to see the transient build up 
at resonance, using SPICE allows 
us to more quickly obtain all the 
waveforms for different situations.

From top to bottom: vS (t), i(t), 
vC (t), vL (t), and vR (t).

Note regarding SPICE: The frequency 
1591.5 Hz corresponds to 10 krad/s. Also, 
we added a 90° phase shift to make a 
cosine rather than a sine in order to match 
with the hand analysis.



G. Tuttle - 2022 AC resonance – 10

The slow build-up of the energy in the reactive components is more 
evident if the time constant of the transient is longer. By reducing R to 
50 Ω, the time constant stretches to 4 ms.

Note that reducing the 
resistance also changes the 
steady-state current. With 
R = 50 Ω, the peak current 
will be 200 mA. The 
resistance voltage doesn’t 
change, but the peak voltages 
for the capacitor and 
inductor are now 200 V! 

A 10-V source is producing 
200 V on the capacitor and 
inductor. Remarkable!

vS (t)

i(t)

vC (t)

vL (t)

vR (t)
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If the resistance is increased, say to R = 5 kΩ, so that the transient is no 
longer underdamped, we still see resonance, vR = vS and vC = – vL.

vS (t)

i(t)

vC (t)

vL (t)

vR (t)

However, there is no 
enhancement in the 
capacitor and inductor 
voltages. With R = 5 kΩ, the 
peak current at steady-state is 
2 mA. The resistor voltage is 
still 10 V, but the capacitor 
and inductor peak voltages 
are now only 2 V. 

To get enhanced voltages, 
the R, L, and C must produce 
an underdamped transient, 
and the under-damped 
frequency must be close to 
the AC source frequency, 
which is at resonant 
frequency of the LC combo.
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A brief summary of series resonance: 

• The condition for series resonance is . (  is the resonant 
frequency). 

• At resonance, the impedances for the inductor and capacitor cancel. 
The resistor voltage will match the source in magnitude and phase. The 
capacitor and inductor voltages will have exactly the same magnitude 
and be exactly 180° out of phase. 

• The series current is determines by the resistance: . 

• The the voltage across the reactive components can be found from the 
current:  and . 

• If the values of R, L, C are such that , then the magnitude of 
the inductor and capacitor voltages will be bigger than the magnitude 
of the source. (Exercise: Prove this.) This must necessarily correspond to 
the transient being fairly underdamped, so that the source frequency 
and the damped oscillation frequency of the transient “interact” to 
“pump up” the voltages. 

• For bigger values of R, such that the transient is over-damped or only 
slightly under-damped, there is no enhancement of the inductor and 
capacitor voltages, but they will still be resonant.

ω2
o = LC ωo

ĨS = Vm /R = Im

ṼC = ZCIm ṼL = ZLIm

L /C > R
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Can we somehow make use of the enhanced voltages seen at 
resonance? It seems like if we could get that energy out, we might solve 
the world’s energy problems. Unfortunately, this is just not possible. To 
see the futility of it, consider putting a load resistor across the capacitor 
in an effort to extract some of that “extra” energy.

+
–

R L

–

+
C +

–

R L

–

+
C RL

500 Ω

1 µF

10 mH

ṼS = 10 V ṼC = (20 V) e−j90∘

100 Ω

Ṽp = ?

We immediately see the problem as we start the AC analysis. The extra 
resistor changes the impedance: 

where   is the parallel combination of RL and C.

Ṽp =
Zp

ZR + ZL + Zp
ṼS

Zp = ZC ZRL =
RL

1 + jωRLC
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Grinding through the details, we find: 

(Work this out as an exercise.) Plugging in numbers: 

Converting to magnitude and phase: . 

Huh.  

Of course, what has happened is that the resistor we added in an 
attempt to extract the resonance energy has destroyed the resonance. 
Resonance is a special condition, and the energies being traded back 
and forth between the inductor and capacitor are necessary to create 
the special condition. Trying to extract some of the energy messes 
everything up. 

As we know, there are no free lunches.

Ṽp =
Vm

(1 − ω2LC + R
RL ) + j ( ωL

RL
+ ωRC)

Ṽp =
10 V

(1 − 1 + 5) + j (10 + 0.5)
=

10 V
5 + j10.5

Ṽp = (0.86 V) e−j64.5∘
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L C R

Parallel resonance
It should come as no surprise that an inductor and a capacitor in 
parallel will also have exceptional behavior due to resonance. Consider 
the parallel circuit below — calculate the complex current through the 
resistor.

iS (t) = Im cos ωt
200 Ω1 µF10 mHIm = 50 mA

 = 10,000 rad/sω

iR (t)

Converting everything to complex values and impedances, we can use a 
current divider to find : 

Inserting values: 

ĨR

ĨR =
1
R

1
jωL + jωC + 1

R

Im =
Im

1 + j (ωRC − R
ωL )

ĨR =
Im

1 + j (2 − 2)
= Im
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The resistor current has exactly same magnitude and phase as the 
source. Once again, it appears that the inductor and capacitor have 
effectively disappeared from the circuit. 

To see this more clearly, consider the impedance of a parallel LC 
combination: 

Obviously, this becomes very interesting if . In that case the 
impedance of the parallel combination goes to infinity — it effectively 
becomes an open circuit and all of source current flows through the 
resistor. 

For any combination of L and C, there will be a frequency, 

 where the impedance of the parallel combination goes to 

infinity. This is the resonance frequency. 

It is interesting to note that the formula for parallel resonance is 
identical to that for series resonance.

ZL∥ZC =
jωL + 1

jωC

jωL + 1
jωC

=
jωL

1 − ω2LC

ω2LC = 1

ωo =
1

LC
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At resonance the complex resistor voltage is 

.

Since everything is in parallel, we can calculate the capacitor and 
inductor currents: 

Again, we see that the magnitudes of the inductor and capacitor 
currents are greater than the magnitude of the source. It is the exact 
same story as for the voltages in the series resonant case. If the parallel 
RLC circuit has values that lead to a sufficiently under-damped transient 
response and the LC resonance is close to the damped oscillation 
frequency of the transient, then the source can “pump up” the current in 
the L and C to magnitudes bigger than the source. As long as the 
inductor and capacitor stay in resonance, this is perfectly fine.

Ṽ = ZRĨS = RIm = (200 Ω) (50 mA) = 10 V

ĨL =
Ṽ
ZL

=
10 V

j100 Ω
= − j100 mA

ĨC =
Ṽ
ZC

=
10 V

−j100 Ω
= j100 mA


