Use AC analysis to calculate the gain for the circuit shown at right for $\omega=100$ rad/s, 10^3 rad/s , 10^4 rad/s, and 10^5 rad/s. Note that since $\underline{v_o}$ will be complex, the gain will also be complex. $$\begin{array}{c|c} C_2 & \text{InF} \\ \hline R_2 \\ \hline 1.5 \, \mu\text{F} & \text{1 k}\Omega \end{array}$$ $$G = \frac{\tilde{v}_o}{\tilde{v}_i}$$ Express the answers in magnitude / phase form. $$\omega = 10^2 \text{ rad/s}$$: $G =$ _____ $$\omega = 10^3 \text{ rad/s}$$: $G =$ $$\omega = 10^5 \text{ rad/s}$$: $G =$