Name_____ The circuit at right might be called an "adder-subtracter". Find an expression for the output voltage, v_o , in terms of the 4 input voltages, v_a , v_b , v_c , and v_d . | K ₁ 20 KL2 | K ₆ 180 KΩ | |---|-----------------------| | $v_a \circ - \circ \circ \circ$ | | | $v_b \circ \frac{R_2 18 \text{ k}\Omega}{\text{M}}$ | + 0 0 | | $v_c \circ \frac{R_3 30 \text{ k}\Omega}{}$ | | | $v_d \sim \frac{R_4 20 \text{ k}\Omega}{\text{V}}$ | • | | R_5 | > | | $ rac{R_{5}}{20~ ext{k}\Omega}$ | \{ | | | | | | * | $v_o =$ _____