Name_____

The circuit at right might be called an "adder-subtracter". Find an expression for the output voltage, v_o , in terms of the 4 input voltages, v_a , v_b , v_c , and v_d .

K ₁ 20 KL2	K ₆ 180 KΩ
$v_a \circ - \circ \circ \circ$	
$v_b \circ \frac{R_2 18 \text{ k}\Omega}{\text{M}}$	+ 0 0
$v_c \circ \frac{R_3 30 \text{ k}\Omega}{}$	
$v_d \sim \frac{R_4 20 \text{ k}\Omega}{\text{V}}$	•
R_5	>
$rac{R_{5}}{20~ ext{k}\Omega}$	\{
	*

 $v_o =$ _____